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Abstract-Debonding of films attached to substrates as well as fibers embedded in matrices typically 
involves initiation, steady-state propagation and a final transient as the debond converges on an edge or 
another debond. The emphasis in this paper is on the mechanics of the transient. Under most 
circumstances, a converging debond crack is characterized by an energy release rate that approaches zero, 
causing the crack to arrest without attaining full debonding. The relevance of this phenomenon will be 
discussed with reference to the measurement of toughness for thin film interfaces and the overall 
stress-strain behavior of ceramic matrix composites. ~8 1997 Acto Metallurgica Inc. 

1. INTRODUCTION 

Residually stressed thin films debond from attached 
substrates when the stress and/or the film thickness 
becomes sufficiently large. The qualitative relation 
between the energy release rate G motivating growth 
of a plane strain interface crack is sketched in 
Fig. I(a) for a film with a uniform residual stress r~ 
and thickness t. When the crack tip is remote from 
the edges of the film, steady-state propagation 
conditions prevail with energy release rate 

G = 1 - vf a’t 
5’ -- 

2 R (1) 

where E, and vi are the Young’s modulus and 
Poisson’s ratio of the film. When the crack is either 
short or long such that its tip is within several 
thicknesses of the edge, it “senses” the edge, and G 
decreases below the steady-state value of equation 
(l), approaching zero as the distance between the tip 
and the edge becomes small. Because equation (1) is 
the maximum energy release rate, the fail-safe 
criterion against debonding is: G,, < r,, where I-, is 
the interface toughness at the relevant mode mixity. 

Tests to measure the interface toughness of thin 
film-substrate systems often employ steady-state 
conditions [l, 21 because the mechanics is simple and 
because accurate measurement of the crack length is 
not required. For such tests to be effective, a sharp 
pre-crack must be introduced. Otherwise, an in- 
itiation barrier exists. Often, there is a barrier 
[Fig. l(a)] such that the combination of stress and 
thickness needed to initiate interface crack propa- 
gation exceeds that required for steady-state growth, 
causing G,, > r,. The debond event is then dynamic, 
with the crack arresting when the tip approaches the 
far edge. Such a test would be designated unsuccess- 
ful in the sense that G,, [equation (l)] cannot be 
identified with r,. However, when the relation 

between G and the crack length as the tip approaches 
the far edge is known, quantitative conclusions about 
r, can be made from measurements of the distance 
between the edge and the arrested crack tip. One 
purpose of the present paper is to supply the 
necessary solutions. 

The crack arrest phenomenon is depicted in Fig. 2 
[3]. It comprises a Ni-polymer bilayer on a polymer 
monolayer well bonded to a stiff substrate. The 
interface of interest is that joining the two polymers. 
The residual tension in the top polymer film is not 
sufficient to debond the interface. Therefore, a 
superlayer of Ni with strong adherence to the 
polymer and a large residual tension has been 
deposited. It is this stress which supplies the energy 
needed to debond the polymer-polymer interface. 
This occurs when the Ni film becomes sufficiently 
thick that super critical conditions are attained. 
Further details are given in Section 3.3. Here, it is 
noted that removal of an initiation barrier requires a 
complex additional step in specimen preparation [2]. 
Consequently, determination of the interface tough- 
ness from the arrest location of the debond cracks 
facilitated the testing and also gave more robust data. 

Related transient interface debonding is tlisplayed 
by fibers embedded in brittle matrices. The behavior 
illustrated in Fig. l(b) applies to a composite layer 
with uni-directional fibers carrying an overall stress 8 
parallel to the fibers. When matrix cracks develop, a 
debond propagates up the fiber. The combined effects 
of applied stress, friction and residual stresses must be 
superimposed for complete analysis of debond 
evolution [4, 51. Here, only the contribution due to 
the applied stress 0 will be addressed to highlight the 
convergence effect. There is again an initiation barrier 
because the energy release rate for very short debonds 
emerging from the tip of the matrix crack is below its 
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Fig. 1. Three stages of debonding for films and fibers. 

steady-state magnitude [5]. In steady-state, the energy leaving a portion of the fiber still attached to the 
release is given by [4]: matrix. This behavior has implications for the overall 

G = (1 -f) (1 - v2)rPR 
IS - 

4f E ’ 

stress-strain behavior of the composite discussed in 
(2) Section 4. 

where f is the volume fraction of the fibers and R is 
their radius. This particular expression is restricted to 

2. THE ASYMPTOTIC LIMIT FOR A 
CONVERGING DEBOND 

fibers and matrix having the same isotropic elastic 
constants, E and v. The effects of elastic mismatch are Consider two converging crack tips sufficiently 
addressed later. As a debond spreads along the fiber close that the only relevant length is the distance AL 
and converges on another debond extending in the separating them, as depicted by the plane strain 
opposite direction from the neighboring matrix problem in Fig. 3. This limit also provides a 
crack, the energy release rate approaches zero, as reasonable approximation for a debond tip ap- 
indicated in Fig. l(b). The converging debonds arrest proaching a free edge, discussed in connection with 

Fig. 2. Thin polymer lines on a Si substrate with a SAM interface, plus a Ni superlayer. The intact ligament 
length gives the interface toughness. 
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Fig. 3. Geometry and loading for asymptotic debonding 
problem. 

Fig. l(a). Moreover, it applies to debonds converging 
along a fiber, because plane strain is attained when 
the debond tips are close. Subsequent numerical 
results for the energy release rate will be seen to 
approach this asymptotic limit in the transition 
between steady-state and full debonding. 

The solution to the problem of isotropic elastic 
half-planes joined along the interface on y = 0, 
1x1 < AL/2 and loaded by a remote stress oII = -u in 
the upper half-plane can be obtained using the 
complex variable method of elasticity. Similar 
solutions have been presented by Rice and Sih [6] and 
Erdogan [7]. The two Dundurs parameters, c( and b, 
measuring the elastic mismatch between the two 
half-planes enter the solution, as does the so-called 
oscillation index c defined in terms of /I by 

1 1-p 
(=@ 1+B ( > 

(3) 

In plane strain, the Dundurs parameters are given by 

and 
1 /A(1 - 2vz) - /A*(1 - 2vJ 

p = 2 fi,(l - v*) + p2(1 - v,) ’ 
(4) 

where I? = E/(1 - v’) and p = E/(2(1 + v)) is the 
shear modulus. 

The tractions acting on the bonded portion of the 
interface are given by 

i(1 - cc)0 
xe_~~In~~) 

cr2* + ia,* = - 
2J1-p2 $X-Z’ 

(5) 

For the crack with tip at x = -AL/2, stress intensity 
factors K, and Kz are defined such that on the 
interface a short distance r ahead of the tip [8] 

g2* + ig12 = (Kt + iK2)r“. - (6) 
Jfm 

For the converging debond crack advancing from the 
left in Fig. 3, the stress intensity factors are 

K + iK = i(1 - c()o RAL (AL)-” 
I 2 (7) 

The associated energy release rate is given by 

where E:’ = (l/2) (.!?;I + &I). This result for G 
normalized by G,, in equation (1) gives 

Note that G vanishes as the debond tips converge. 
The energy release rate is a strong function of the 
elastic mismatch LY, but it is independent of fi. The 
mode measure $, defined as tan $ = c~,~/cT~~ a distance 
r ahead of the tip, is obtained from equation (7) as 

(10) 

When /I = 0, the crack tip loading is mode II, with 
K2 = (1 - cc)cra/(4$). Otherwise, the tip ex- 
periences mixed-mode conditions. 

3. THIN FILM DEBONDING 

3.1. Homogeneous,films under un$orm residuul stress 

Various thin film debonding scenarios can be 
imagined. Figures 4(a)-(c) illustrate the three 
considered here. The simplest to represent is that 
depicted in Fig. 4(a) where the elastic energy release 
in a film with a uniform tensile pre-stress o drives two 
interface cracks converging upon each other from 
opposite directions. The interface stress intensity 

Pm-Stressed 
and Cracked 

Pm-Stressed Cracked 

(a) Symmetric Debonds 

PreSiressed. Cut 
and Cracked 

Pm-Stressed Cut and Cracked 

(b) Debond Approaching Film Edge 

cut line 

m yxJ+yJ: 

Pre-stressed. cut Pm-Stressed Cut and Cracked 
and Cracked 

(C) Debond Approaching Film/Substrate Edge 

Fig. 4. The scenarios for convergent debonding of thin films. 
4J2(1 - P*) 
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factors and the energy release rates are determined 
from the solution to the second of the two elasticity 
problems indicated on the right in Fig. 4(a). This 
problem is symmetric with respect to the y-axis. 
Primary attention, however, is directed towards the 
second scenario, Fig. 4(b), whereby a uniformly 
pre-stressed film is terminated at x = 0, exposing a 
free edge. An interface crack propagates from the left 
towards the free edge. Again, the second elasticity 
problem on the right in Fig. 4(b) needs to be solved 
as the crack converges upon the free edge. In this 
case, the compressive stress 0 acting on the right hand 
free edge of the film is an essential feature of the 
solution. Since only elastic behavior is considered, the 
sequence of cutting followed by interface cracking 
need not be treated as separate events. In the third 
scenario, Fig. 4(c), both the pre-stressed film and the 
substrate is terminated along x = 0, with the debond 
crack approaching the free edge. Results for this 
scenario have not been computed. They are expected 
to be similar to Fig. 4(b), especially when the 
substrate is stiff compared with the film. 

Results have been computed using a finite element 
model of the problems depicted in Fig. 4. The width 
of the model is taken to be 300 t, while the depth of 
the substrate is taken as 20 t. The bottom of the 
substrate is constrained against vertical displacement 
but free to displace horizontally. A highly refined 
mesh is used in the vicinity of the crack tip. The 
J-integral is used to evaluate G, and II/ is computed 
by fitting theoretical crack tip opening and shear 
displacement amplitudes to the numerical values. An 
excellent check on the accuracy of the model is 
provided by the analytical results for the steady-state 
limit [equation (l)] which is approached at sufficiently 
large AL/t. The corresponding limit for the measure 
of mode mixity is tj = w(a), where w is tabulated by 
Suo and Hutchinson [9]; in the absence of elastic 
mismatch, w(O) = 52.1”. Trends in G for four 
mismatch parameters a are presented in Fig. 5(a) for 
the second scenario described above. Apart from the 
curve for CI = - 1 corresponding to the limit of a rigid 
substrate, the results have been computed with p = 0. 
The companion results for the mode-mixity measure, 
$, for the non-rigid substrates are displayed in 
Fig. 5(b). 

The debond begins to sense the edge of the film 
when the tip is within 5-20 times the film thickness, 
depending on the elastic mismatch. This distance is 
surprisingly large. It is this feature of the converging 
debond which allows graceful arrest and makes 
measurement of interface toughness feasible. Figure 
6(a) illustrates the approach to the asymptotic limit 
[equation (9)] for both symmetrically converging 
debonds and a debond converging on an edge for a 
mismatch where the film is compliant relative to the 
substrate, CI = - l/2. For this mismatch, the asymp- 
totic result becomes accurate for the symmetrically 
convergent debonds when AL/t is about l/2, but it 
somewhat overestimates the energy release rate for a 
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Fig. 5. Energy release rate (a) and measure of mode mixity 
(b) for convergent debonds. 

debond converging on a free edge. A comparison 
with the asymptotic result over the full mismatch 
range is given in Fig. 6(b) at AL/t = 2, for which 
there is essentially no difference between the 
numerical results for the two cases. Another 
important implication of Fig. 6 is that, when the 
remaining ligament is greater than about t/2, the 
energy release rate of a symmetrically converging 
debond is essentially indistinguishable from that for 
a debond converging on a free edge the same distance 
away. In other words, the debond is unable to 
distinguish another debond from a free edge until it 
has approached to within a film thickness. 

Converging debond phenomena have been ob- 
served for films delaminating under nominally 
axisymmetric conditions with an external 
interface crack propagating inward debonding the 
remaining circular ligament [lo]. As in the plane 
strain cases analysed here, the energy release rate 
approaches zero as the remaining ligament is 
debonded [ll]. Gao’s [12] result for the asymptotic 
limit when the ligament radius a becomes small 
compared to the film thickness is G = (1 - v)o’a/ 
[rc(l + v)E] for the case in which the film and 
substrate have no elastic mismatch and CJ is the 
equi-biaxial pre-stress. 
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3.2. Homogeneous films under non-uniform residual 
stwss 

For completeness, results are derived which enable 
the determination of G and II/ for the case [Fig. 4(b)] 
in which a crack converges upon a cut edge when the 
film has a residual stress that varies through its 
thickness, o(y). Let c? = I/t jiia (y) dy be the average 
residual stress and M be the moment of distribution 
about the film midplane, i.e. M = i&r(v) (y - t/2) dy. 
The results presented in the previous sub-section 
apply for the contribution due to c?. Results for G and 
tj for A4 with 6 = 0 are given in Fig. 7 for several x 
with j = 0. Note that a two-part composition of the 
solution [such as that in Fig. 4(b)] applies here also, 
but with M acting in the opposite sense (Fig. 7). The 
results apply when A4 > 0, such that the residual 
stress in the film is tensile at its top surface and 
compressive at the substrate interface. The debond 
crack is open: it would be closed when A4 < 0. In 
steady-state, 

G =l-vf6M? 
I\ ____ E, t’ (11) 

(b) 
1 ,,,,,,,,,,,,,,,,,,, 

_ AL/t=2 

Asymptotic Approxmntion (2.7) 

Symmetrically Converging 

a 

Fig. 6. Comparison of numerical results and asymptotic 
formula (9) for two cases of convergent debonds: (a) 

m = -l/2; (b) AL/t = 2. 

(a) 

0 
0 2 3 4 5 

AL/t 

(b) 
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AL/t 

Fig. 7. Energy release rate (a) and measure of mode mixity 
(b) for converging debond for residual stress equivalent to 

a moment per unit length M. 

while tiqS = -rc/2 + w(a) when M> 0, but 
rj, = - 7r/2 (mode II) when M < 0. The most notable 
feature brought out by Fig. 7, relative to the results 
for c? in Fig. 5, is the considerably smaller domain in 
which the interface crack departs from steady state. 

Under combined r? and M, G,, and iSS are given by 

G,Ma,,=~[~+~] (12) 

and 

tan ijIE = 
12M cos w + c?hl sin w 

-$%V sin w + 6h’cos cJ’ (13) 

When the crack is not in steady state, G cannot be 
obtained by an addition of the respective energy 
release rates (due to d and M). Then, G and tj must 
be obtained from a linear superposition of the stress 
intensity factors. When fl = 0, the respective contri- 
butions are obtained from Figs 5 or 7 using 
KI = @ cos tj and KS = m sin $. Then, the 
desired results are generated using G = (c + g)/E. 
and tan $ = KJK,. 
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3.3. Two-layer$lms: A stressed metal layer on top of 
a compliant polymer layer 

It becomes increasingly difficult to present compre- 
hensive results for multi-layer delamination. Closed 
form results under steady-state conditions can be 
obtained for G, but not for $. General results for 
converging debonds where the film is multi-layered 
are even harder to obtain, but a surprisingly accurate 
and simple formula for the energy release rate can be 
derived for a two-layer film comprised of a stiff 
pre-stressed layer attached to a compliant underlayer. 
We begin by presenting a limited set of finite element 
results for a two-layer film having individual layers 
representative of the epoxy-Ni system discussed in 
the Introduction, illustrated in Fig. 2 [3]. The purpose 
of these experiments was to study debonding of 
polymer-polymer interfaces with systematically vary- 
ing interface chemistry. For this purpose, a self 
assembled monolayer (SAM) with either a CH, or a 
COOH end member, has been placed on a Si 
substrate. An epoxy layer of thickness tl = 1 pm has 
been superposed. The top Ni layer, deposited by 
vapor deposition, is subject to an intrinsic residual 
tension of the order of 1 GPa. It is the elastic energy 
stored in this layer that drives the debond crack, 
when the layer thickness exceeds a critical value. The 
mechanics model analyzed numerically for this case 
is shown in the insert in Fig. 8. For the purpose of 
calculating G, the SAM is ignored because it is very 
thin. The interface lies between the epoxy layer (6, 
v,, t,) and the infinitely thick Si substrate (Ez, v2). The 
Ni layer (R, v3, ts) on top has a residual tension, c. 
The epoxy layer also supports a small residual 
tension, but the elastic energy stored in this layer is 
less than 1% of that in the Ni layer and can be 
ignored. 

The numerical results in Fig. 8 display the energy 
release rate G as a function of AL/t, s (Lo - L)/tl for 
two values of El/E3 representative of the expected 
moduli ratio of an epoxy to Ni. The ratio EJEz Ni 
to silicon is about unity, the Poisson ratios have been 

AL/t, 

Fig. 8. Energy release rate for convergent debonding for a 
bi-layer film where the top layer is subject to a residual stress 
6, with ta/t, = 0.4 and the other parameters are specified in 

the text. 

$14 I2.5 

Fig. 9. Effect of modulus ratio El/E3 on steady-state energy 
release rate of a bi-layer film with t3/tl = 0.4 and only the 

top layer subject to residual tension. 

chosen as v, 2 0.5, v2 = 0.25 and v3 = 0.33, and the 
ratio of the two-layer thicknesses is taken to be 
t,/t, = 0.4, corresponding to the films in Fig. 2. In 
Fig. 8, G has been normalized by (1 - vj)a2t3/(2Ej) 
which is slightly greater than the steady-state energy 
release rate G,,, as can be seen in Fig. 9. Because the 
epoxy layer is so compliant compared with the Ni 
layer, almost all of the residual elastic energy stored 
in the Ni layer is released by the debonded two-layer 
film (subject to plane strain constraint in the 
out-of-plane direction). As the stiffness of layer # 1 
increases compared to that of layer # 3, more elastic 
energy remains in the debonded two-layer film. 
Nevertheless, even when Ej = E,, Fig. 9 shows that 
G,, is only reduced by 25% below that estimated upon 
assuming that all the elastic energy in the top layer 
is released. 

The result derived in the Appendix for the 
two-layer system shown in the insert in Fig. 8 is 

where 1= 

with & = R/(1 - vi) and pI = &/[2(1 + v,)]. 
Equation (14) is expected to be accurate if the shear 
stiffness of layer 1 is small compared to the 
extensional stiffness of layer 3 such that I is large 
compared to the total thickness of the film. 
Predictions obtained from equation (14) for the two 
cases considered in Fig. 8 are included there as 
dashed line curves. The simple formula clearly 
provides a reasonably accurate description of the 
energy release rate of the converging debond. 

The curves in Fig. 8 for the debond converging on 
the free edge of the film show that G departs from the 
steady-state limit at large AL/t,, especially when the 
lower of the two layers is relatively compliant. For 
example, for El/E3 = 0.005, the interface crack first 
senses the free edge of the film when its tip is about 
75 tl from the edge. The experiments on the epoxy-Ni 
films, such as those in Fig. 2, show that such distances 
are characteristic of the ligament size. It is evident 
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from the limited set of results presented here that 
widely disparate moduli of the layers has a major 
effect on the behavior as the debond converges on the 
free edge. Another issue yet to be addressed is the role 
of plastic deformation in the polymer generated by 
the debond crack tip. The relevance of elastic analysis 
must be closely examined if the plastic zone becomes 
comparable in size to the layer thickness. 

4. FIBER DEBONDING 

The trend of energy release rate of a mode II 
debond spreading along a fiber and approaching a 
debond progressing in the opposite direction is shown 
in Fig. l(b). The focus is on the contribution due to 
the applied stress 5. A transverse section axisymmet- 
ric cell model (Fig. 10) has a fiber radius R, and cell 
outer radius Ro, such that the volume fraction of the 
fibers is f= (R/Ro)‘. The axial load carried by the 
composite is nR,$. Matrix cracks have formed and 
are spaced 2Lo. Axisymmetric debond cracks spread 
along the fiber from the matrix cracks with current 
length L. The debonds are considered to be closed 
mode II cracks, consistent with the residual stresses 
present in the composite systems of interest. The 
elastic properties are taken to be isotropic with Er, vf, 
E,,, and v,,, as the elastic constants for the fiber and 
matrix, respectively. The boundary conditions on the 
lateral sides of the cell mimic the interaction between 
cellular units in a composite. The shear traction is 
zero and the radial displacement is constrained to be 
independent of the axial coordinate such that the 
average radial component of traction is zero. This 
boundary condition has been labeled Type II [4]. 

When the debond length L is larger than about one 
fiber radius and when AL = Lo - L is sufficiently 
large compared to R, the interface crack propagates 
in steady-state (G independent of L). (In this section 
the distance between the debond crack tips is taken 

Fig. 10. Cylindrical cell model of a uni-directional ceramic 
matrix composite with fiber-matrix debonds emerging from 
neighboring matrix cracks and converging towards each 

other. 

AL/R 

Fig. 11. Energy release rate for debond crack tips 
approaching each other along a fiber and comparison with 

the asymptotic result (18). 

to be 2AL rather than AL, as in Sections 2 and 3.) 
When there is no elastic mismatch between the fiber 
and matrix, G,, is given by equation (2). With elastic 
mismatch, 

G,, = c: F, 
m 

(15) 

where the algorithm for computing the coefficient 
c,(,f; Ef/E,,,, vf, v,) is given by Hutchinson and Jensen 
[4]. On any debonded segment, the average stress in 
the fiber is er = 5/f. The asymptotic limit in Section 
2 is expected to apply when AL becomes sufficiently 
small compared to R. With c?~ identified with -0, as 
well as E, and v, with the properties of the fiber, and 
El and v2 with those of the matrix, from equation (8) 

G = (1 - a)&cAL 
16f!f& ’ (16) 

where R = E&l - VT). Thus, as the debonds 
converge, with AL/R approaching zero, 

G (1 - cc)nE, AL -= 
G,, 16fc:Er R’ (17) 

When there is no elastic mismatch this reduces to 

A numerical evaluation of the coefficient multiplying 
AL/R in equation (17) shows that it depends weakly 
on the elastic mismatch, and thus equation (18) is a 
reasonably good approximation except for large 
mismatch. Specifically, for f= 0.4, the coefficient in 
equation (17) is about 7% above that in equation (18) 
when the fiber is twice as stiff as the matrix and 7% 
below when the matrix is twice as stiff as the fiber. 
Even when the corresponding stiffness ratios differ by 
a factor of five, the error in using equation (18) is only 
about 15%. 

Numerical results for G normalized by G,, in 
equation (15), computed by a finite element analysis, 
are presented in Fig. 11 as a function of the 
normalized half-spacing between the converging 
debond crack tips. AL/R. The calculations have been 
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Fig. 12. A CMC transversely separated after tensile loading in the O/90 orientation up to 90% of the 
ultimate tensile strength. The protruberences represent the regions of intact interface as debond 

convergence that were ruptured upon transverse separation [13]. 

carried out with f = 0.4, vr = vm = 0.2, and Erl 
E,,, = l/2, 1 and 2. The numerical results validate 
the observation that G/Gss has little dependence on 
elastic mismatch. The variation of the coefficient of 
AL/R in equation (17) over the three values of 
Et/Em is negligible and not even observable for the 
asymptotic limit shown as the dashed line in 
Fig. 11. The numerical results show that the 
asymptotic limit (18) is an excellent approximation 
when AL/R ,< l/2, and that steady state persists 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0 

Tensile Strain, & (%) 

Fig. 13. Tensile stress-strain curves showing various levels 
of strain hardening that reflects the role of debond 

convergence [ 141. 

until the debond tips are within about 2R. Thus, the 
converging debonds on a fiber do not begin to sense 
each other until they are much closer than those for 
thin films. 

There are two practical consequences of debond 
convergence. The first is that the debonds never 
intersect. Intact segments always exist midway 
between matrix cracks. This intact material becomes 
evident when a CMC is dissected parallel to the 
fibers, subsequent to tensile tests (Fig. 12). A periodic 
array of ridges is apparent on the dissected surface 
[13]. These ridges have previously been used to 
highlight matrix cracks and to measure crack 
densities. The second effect of convergence is on the 
effective strain hardening. As the debonds approach, 
the rate of inelastic straining decreases, resulting in an 
increase in the strain hardening coefficient. This 
behaviour is manifest in CMCs with low friction 
stress (Sic-CAS) as an upturn in the stress (Fig. 13) 
at larger strain levels. In CMCs with high friction 
(Sic-Sic), it results in a high strain-hardening rate 
throughout the inelastic deformation process 
(Fig. 13), concomitant with a larger matrix crack 
density [14]. It also rationalizes discrepancies found 
between measurements of constituent properties from 
hysteresis strains and simulations that neglect the 
convergence effect. 
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APPENDIX: APPROXIMATE ANALYSIS OF 
THE TWO-LAYER SYSTEM 

The two-layer system with the numbering and notation 
for the thicknesses and moduli shown in the insert of Fig. 8 
is adopted. We begin by considering the symmetric 
geometry shown farthest to the right in Fig. 4(a). Denote the 
total width of the remaining ligament by 2b and the length 
of each crack by a. The pre-stress in layer 3 is e. Analysis 
of the problem on the right in Fig. 4(a) will provide the 
energy release rate, as previously discussed, with 0 acting in 
the sense shown (0 > 0). Layer I has no pre-stress. Let 
I?, = Ei/(l - r:) be the plane strain tensile modulus of layer 
3. while pi = Ef/(2(1 + vi)) is the shear modulus of layer 1. 
If the shear stiffness of layer I is small compared to the 
tensile stiffness of layer 3, the length of the shear lag zone 
through which the film stress is transferred to the substrate 
will be large compared to the total film thickness. We 
capitalize on this feature and employ a one-dimensional 
analysis as follows. 

Let a(x) be the average stress acting parallel to the film 
in layer 3, with the origin of x taken as the center of the 
remaining ligament. Direct attention to the remaining 
ligament, -b < .Y < 6. Let r(x) be the shear stress at the 
interface between layers I and 3, and let u(.Y) be the 
displacement of this interface in the x-direction. With 
0’ z d()/d?c , 7 = u/t, is the average shear strain in layer I 
and t = K’ is the extensional strain at the bottom of layer 
3. Equilibrium of layer 3 requires 5 = s/t;. Using r = pi; 
and d = /?,c in this equilibrium equation. one obtains 
U” - 1% = 0 where 1 is defined in equation (14). The solution 
to this equation. subject to symmetry about Y = 0 and 
d = -0 at x = -b (or I = +b). is 

al sin h(xjl) 
u= -Em. (A.11 

Let U be the displacement in the x-direction at the left end 
of the film at x = -(a + b), and denote the potential energy 
of the left half of the system by PE. (Because the two halves 
are equal, attention is directed only to the left half.) For 
prescribed 0, one can readily show that PE =: --joUti. 
Approximate U as the sum of u( -b) from equation (A.l) 
and craj&, representing contraction of the unattached 
segment lying to the left of x = -b: 

(A.21 

The effect of layer I on the contraction of the unattached 
segment is neglected, consistent with the assumption that 
layer 3 is much stiffer than layer I. Then, from 

G= _dPE=Lgt C’ 
da 2 ‘da’ 

one obtains 

$ = tan h2 i 
\, 0 

where G,, = a%/(2&). The final step in arriving at equation 
(14) is to identify AL (defined in the insert in Fig. 8) with 
26, in accordance with the discussion in the body of the 
paper to the effect that the tip can hardly distinguish a free 
edge from another debond crack. 


