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Abstract. To quantify the growth behaviour of fatigue cracks growing towards microstructural barriers or elastic
obstacles, parametric solutions are obtained for crack-tip opening displacement and plasticity-induced crack clo-
sure of a mode 1 fatigue crack growing towards elastic obstacles. Three common bi-material systems are analysed
using the finite element method, in which both constituent materials have identical elastic properties but only the
phase that contains the crack can deform plastically. It has been found that under monotonic loading the crack-tip
opening displacement decreases as the crack-tip approaches the intertface boundary, but reaching a non-zero value
when the crack-tip terminates at the boundary. For a fatigue crack growing under constant amplitude loading, the
crack-closure stress has been found to increase as the crack grows towards the barrier. Based on these resulls a
mechanistic model is proposed 1o quantily the influence of stress level on the laligue threshold of microstructurally
small fatigue cracks, with predictions being in close agreement with cxperimental data.
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1. Introduction

The propagation of fatigue cracks whose size is on the order of the microstructure has been
found to be strongly dependent on the crack-microstructure interactions, with stress-state
and amplitude also affecting such interactions (Miller, 1993; McDowell, 1996; Liu, 1998,
1999). Examples of microstructural barriers to crack growth include grain boundaries, twin
boundaries, and hard particles or phases with higher yield strength. Such interactions have
been identified as the primary mechanism responsible for the observed oscillatory behaviour
of microstructurally short cracks, For instance, under constant amplitude loading conditions,
a distinguishing leature of microstructurally short crack propagation is the deceleration with
crack length or even arrest upon encountering an obstacle or microstructural barrier (Miller,
1991). Experimental studics have confirmed the existence of non-propagating cracks, with
length comparable to the typical grain dimcnsion, at stress levels below the fatigue limit
(Miller, 1993). These findings suggest that fatigue damage can be related to the growth of
fatigue cracks, and fatigue resistance can be equated to the limiting conditions for the propaga-
tion a crack. Consequently it should be possible to develop a mechanistic approach which can
quantify the growth behaviour of fatigue cracks from the micro-scale to the macro-scale and
to the large-scale. Two major challenges facing the development of such a unified approach
which can link the scales in fatigue crack propagation are (i) to identify a consistent correlating
parameter suitable across these different scales, and (ii) to quantify the interactions of fatigue
cracks with microstructure.
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The interactions between cracks and a material’s texture are affected by many aspects
of the material’s microstructure, such as crystallographic orientations, the size and shape of
grains, the size and distributions of second phases and inclusions, and material heterogeneity
and anisotropy. Several distributed dislocation theory-based approaches have been developed
to simulate the blocking effect of grain boundaries on the growth of short cracks (Tanaka
et al., 1986; Navarro and de los Rios, 1987, 1988). Although these models are most ap-
propriate for shear mode crack growth, they have been applied to deal with tensile mode
crack growth, by appealing to the Dugdale model for plane stress. One distinct feature of
these dislocation-theory based models is that the crack-tip opening displacement (CTOD)
is predicted to decrease to zero as the crack-tip approaches a grain boundary, assuming no
plastic deformation would occur in the next grain (Navarro and de los Rios, 1987, 1988).
While these models have shown some success in simulating the observed oscillatory pattern
of short crack growth rates, these models are strictly speaking applicable to only shear mode
cracks. It is unlikely that the assumption of strip yielding is valid for tensile cracks, especially
under plane strain conditions. This decreasing trend in CTOD has been confirmed by a finite
element analysis of an edge crack in a bi-material structure consisting of a perfectly plastic
single crystal and an elastic solid (Hutchinson and Tvergaard, 1999). However, it is not clear
from these results whether CTOD would actually decrease to zero as the crack-tip approaches
the boundary,

By employing the finite element method, Hutchinson and Tvergaard (1999) obtained some
basic solutions of the crack-tip sliding and opening displacement of edge cracks in single
crystals under cyclic loads. Results were obtained assuming that the crystal itself does not ex-
perience overall yielding, and there is no crack face contact. The preliminary results suggested
that the crack-tip opening and sliding displacements decrease as the crack tip approaches
a grain boundary across which the crystallographic orientation changes, consistent to the
trend expected from the distributed dislocation theory-based approaches. Tt was noted by
Hutchinson and Tvergaard (1999) that several important issues are yet to be resolved. Firstly,
quantitative results for the interactions under cyclic loading are required to understand the
condition under which crack arrest by obstacles or barriers would occur. Second, solutions
pertaining to large-scale yielding or gross-section yielding are essential to the development of
quantitative methods. This is because for fatigue crack nucleation to occur in a polycrystal,
extensive plasticity relative to the crack size may invalidate the applicability of small-scale
yielding solutions. In some cases a small fraction of surface crystals favourably oriented for
slip may even experience overall reversed plastic straining in each cycle. Finally, the effect
of crack closure on crack-growth driving force, especially that due to plasticity-induced crack
closure, has yet to be clarified.

The objective of this study is to address the aforementioned issues by quantifying the inter-
action between fatigue cracks and elastic obstacles, with a view of developing a mechanistic
model for microstructurally short cracks. The emphasis will be placed on the characterisa-
tion of crack-tip opening displacement and the plasticity-induced crack-closure of a crack
approaching an elastic barrier, as shown in Figure 1(a), which represents an edge crack ini-
tiated in a surface crystal and growing towards the grain boundary. Two other configurations
of engineering importance are also considered: a bi-material with an edge crack which is
perpendicular to the interface, and a semi-infinite crack with a round elastic obstacle situated
directly ahead of the crack tip. The first two cases are to simulate the blocking effect of grain
boundaries on the growth of fatigue cracks, whereas the third configuration is representative of
a crack growing towards a second phase particle or an inclusion in a material. Only the phase
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Figure 1. Edge crack emanating from a surface grain.

that contains the crack can deform plastically but both constituents have the same elastic
properties.

Parametric solutions are obtained by eluastic-plastic finite element analysis under monotonic
(see Sections 2. 3, and 4) and cyclic loading conditions (sce Sections 5 and 6), for both
small-scale yielding and large scale yielding conditions. Where possible the present results
are compared against the predictions of dislocation-based models and a simple double-slip
model. It is worth noting that in the macro scale. deccleration has also been observed for long
cracks approaching a bi-material interface perpendicularly from the weaker material, whose
yield stress is lower than the material on the other side of the interface (Sugimura et al..
1995; Kim et al., 1997). So the present solutions will apply also to long cracks approaching
bi-material interfaces.

2. Small-scale yielding solutions

Fatigue cracks, in polycrystalline alloys as well as single crystals, tend to initiate on slip
plane facets at some oblique angle to the principal stress direction, as illustrated in Figure 1.
Therefore microstructurally short cracks are often of mixed mode. For instance, the mode
ratio of a crack inclined at 45 degrees to the loading axis is approximately —0.5 (Hutchinson
and Tvergaard, 1999). Dcepending on the prevailing slip systems of the matcrial, plastic flow
at the crack tip may be confined to only one set ol mutually orthogonal slip planes (Sacedvafa
and Rice, 1992), or can occur along multiple sets of slip plancs, i.e., unconstrained. Crack-tip
plastic deformation can be further complicated by the width of the slip planes (Hutchinson and
Tvergaard, 1999). In the present study we will limit our altention to the case of a mode [ crack
in a material whose plastic flow is not confined to a limited number of slip planes, i.e., the
plastic deformation can be characterised by homogencous plasticity theories. It is expected
that the plastic deformation under mode 11 conditions can be well characterised using the
dislocation-theory based block-slip models (Tanaka et al.. 1986; Navarro and del los Rios,
1987, 1988) and hence will not be discussed here.
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Figure 2. (a) A mode I crack growing in a semi-circular grain, and (b) a semi-infinite crack approaching an elastic
barrier, representative of small-scale yielding conditions.

2.1. FINITE ELEMENT ANALYSIS

Consider the problem of an edge crack approaching an elastic barrier from within a semi-
circular grain, as shown in Figure 2(a). Both materials possess identical elastic properties
(Young’s modulus £ and Poisson’s ratio v) but only the grain within which the crack exists
deform plastically, and therefore the problem can be viewed as elastically homogeneous but
plastically inhomogeneous. The radius of the grain, the crack length and the distance between
the crack tip and the barrier are denoted as R, a, and b, respectively. In this section we will
focus on the small-scale yielding case where the plastic zone size is much smaller than the
crack size and the distance b is much less than the size of the singularity zone at the crack tip;
large-scale yielding will be considered in the next section. In this case, the problem can be
analysed by a small-scale yielding formulation, whereby the actual crack problem is replaced
by a semi-infinite crack in an infinite body containing an elastic obstacle at distance » away
from the crack tip, as depicted in Figure 2(b). This problem is similar to that considered by
Sugimura et al. (1995), who determined the J-integral using the finite element method.

The size of the plastic zone is of the order, ignoring the blocking effect of the elastic
obstacle,

,

K\2
R = (-) , (D
Oy

where K denotes the applied stress-intensity factor and oy the yield stress of the elastic-plastic
material. This pertaining boundary-value problem, which has two independent length scales »
and R, can be analysed using a boundary layer approach (Rice, 1968; Willis, 1997). Relative to
the length scale R, the crack appears to be semi-infinite, in an infinite body, subject to remote
loading given by the following equation as r/R — o0,

1 A
0ij (F.0) = —=fi; (0) + T 51,8y, 2)
J ( ) \/m J J (
where (r, 6) are polar coordinates centred at the crack tip. The symbol A is used to distinguish
normalised parameters, i.e., 7 = r/R, 6;; = 0;;/00, T = T /oy, and §;; is the Kronecker delta.
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Figure 3. Finite element mesh for small-scale yielding condition, showing (a) boundary conditions, (b) fine mesh
near a straight boundary.

Catalogues of results for stress intensity factors K. the functions f;; (6), and the constant term
T are available for a wide variety ol crack gcometries (e.g., Leevers and Radon, 1982). For
convenience, the K-field is applied by imposing a displacement along the boundary of the
finite element model,

_ VP
= o

where E' denotes the generalised Young's modulus (E' = E for plane stress and £/ =
E/ (1 — v?) for plane strain). The angular functions g; and /; can be deduced from the known
results by Williams (1957). The above displacements are applied to the boundary of the finite
element model, as depicted in Figure 3. The finite element model is constructed using eight-
noded, quadrilateral elements. To ensure the small-scale yielding condition, the strength of
the applied K-field is chosen so that the plastic-zone size given by Equation (20) is less than
one-tenth of the size of the finite element model.

Y Ty . »
*—7“{,' (H U) + F/' Th,‘ ((/‘) lr’) N (3)
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Let us define the crack face opening displacement as §,
S(r)=u, (0 =m)—u,(r,6 =—-m). 4)

Close to the crack tip, e.g. F < 1, the crack face displacement can be expressed as (Hutchinson
and Tvergaard, 1999),

§ =28+ AF — BF InF, (5)

where 8, is the desired crack-tip opening displacement(CTOD). This provides a convenient
method for determining the CTOD based on the displacement results obtained using a finite
element analysis. It is noted that the above definition of CTOD (= R&,) differs slightly
from the operational definition advocated by Rice and Tracy (1976), but is consistent with
the classical Dugdale solution for plane stress condition. According to the Dugdale model,
for a centre crack (with length of a) subjected to uniform stress (o), the crack face opening
displacement can be expressed as,

Boya ¢ 4oy a? 4oy r
n-+r—m|(2|]1—-=|]|——=rln—, (6)
nE a 7k c? nE a
where ¢ denotes the plastic zone size, which is given by ¢ = a/cos (mo /20y ).
It can be shown that the normalised crack opening displacement behind the crack tip
depends on three non-dimensional variables,
§(r)  »

S:T S(f;T,b), (7)

8(r) =

where b = b/ R. Consequently, the normalised crack-tip opening displacement 8, defined in
Equation (24) depends on only two non-dimensional parameters,

=2 (7.5, ®

where the dimensionless function f can be determined numerically using, for example, finite
element methods. Therefore, the crack-tip opening displacement é for a crack approaching an
elastic obstacle can be expressed as,

A S a (T b\ K’

8:R8,(T,b)zf 2 : (9)
Ty R E’O’y

where the function f can be computed using the finite element method for fixed » with varying

R (through varying material’s yield stress) or for fixed R with varying b. In the special case of
zero T-stress, the coefficient f/ depends solely on the normalised distance b/ Rp,

8 = fi b K? T=0 10
= fo R’y ) Eoy =0, (10)

where Rp = 7 K* /807 for plane stress and Rp = K? /370 for plane strain. Solutions of the
function f, will be determined in the following section.

Z 81020

Al
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Figure 4. Contour of plastic zone (shaded arca) under plane stress conditions: (a) b/Rp = [.1,(b)h/Rp = (1L.327.
(C)h/Rp =0.247.
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Figure 5. Solutions ol coelficient fi under plane stress conditions.

2.2. SOLUTIONS FOR A CRACK APPROACHING AN ELASTIC BARRILR

Under plane stress conditions, three typical contours of the plastic zone are displayed in
Figure 4 (indicated by the shaded area). It is clear from Figure 4(a) that before the plastic
zone reaches the barrier, plastic deformation concentrates in a narrow band directly ahead of
the crack tip. consistent with the well-known plane stress solution under small-scale yielding
conditions. Contact between the plastic zone and the barrier occurs for b/Rp =~ 1.0, as ex-
pected. After the plastic zone reaches the barrier, it then extends vertically along the interface
because the material across the interface vemains elastic, as shown in Figures 4(b) and (c).
The crack-tip opening displacement § 15 determined from the finite element results via
Equation (24). Plot of f, as function of b/ R p is shown in Figure 5. Also shown in the figure
are the predictions bascd on a blocked strip-yicld model (Tanaka et al., 1986; Navarro and de
los Rios, 1987, 1988} which will be discussed in more detail later. Perhaps the most significant
finding of the present study is that the crack-tip opening displacement docs not approach zero
as expected from the blocked strip-yicld model. The main veason for this difference is due to
the plastic flow in the direction perpendicular to the crack planc, which signifies a dramatic
change in the mode of plastic deformation brought about by the interaction with elastic barri-
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(b)
Figure 6. Contour of plastic zone (shaded area) under plane stress conditions: (a) h/Rp = 0.693, (b)
h/Rp =0.39,(c) h/Rp = 0.25.

ers. Therefore it is no longer appropriate to treat the plastic deformation as occurring within a
narrow strip, even under plane stress conditions.

Figure 6 shows the evolution of the plastic zone under plane strain conditions. Before the
plastic zone reaches the elastic barrier, the size of the plastic zone increases linearly with
the square of the stress-intensity factor. Therefore, based on the results given in Figure 6(a),
it can be calculated that the plastic zone extends to the barrier at b/Rp = 0.52, where
Rp = K?/3ma}. As will become clear in the next section that this value is very close to that
predicted by the blocked double-slip model. After the plastic zone reaches the barrier, it starts
to extend vertically and along the interface, as shown in Figures 6(b) and (c¢). Two important
observations can be made from the present results. First, before the plastic zone reaches the
clastic barrier, the plastic flow at the crack tip tends to be more diffused under plane strain
conditions than under plane stress conditions, implying that the double-slip model of Rice
(1974) would be more appropriate for this case. Secondly, once the plastic zone reaches the
elastic barrier, plastic flow starts to spread in the direction perpendicular to the crack plane,
causing the crack tip to ‘slide’ open by the shearing action along the interface.

Plot of f, as a function of b/ Rp under plane strain conditions is shown by the symbols in
Figure 7. Like under plane stress conditions, the crack-tip opening displacement asymptotes
to a non-zero value as b/Rp — 0, i.e. when the crack tip approaches the barrier. The finite
element results can be well correlated with the following simple interpolating function,

fo=0564[1—ye PR, (1)

where y = 0.24 and 8 = 13.3. The present results suggest that as the crack tip approaches
an elastic barrier, the crack-tip opening displacement decreases only by about 24% for plane
strain, compared with a 51% reduction under plane stress conditions. The important implica-
tions of this non-zero limiting value in terms of to fatigue crack growth will be discussed later.
For comparison purposes, predictions based on a blocked double-slip model (to be discussed
later) are also plotted in Figure 7.
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Figure 7. Normalized CTOD of a crack approaching an obstacle under plane strain conditions.
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Figure 8. A semi-finite crack terminating at a round obstacle. (a) Geometry and (b) finite element mesh near crack
ap.

2.3. CRACK TERMINATING AT ROUND OBSTACLE

Another problem of practical engineering significance is the interaction between a fatigue
crack and a brittle particle or an inclusion. Similar to the results presented in the previous
section, the crack-tip opening displacement will attain the minimum value when the crack
tip terminates at the obstacle, as illustrated in Figure 8(a). Here an ideal round obstacle will
be considered, with the diameter of the round obstacle being denoted as H. It can be shown
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Figure 9. The coefficient specifying the crack-tip opening displacement for a crack approaching a round obstacle.

by a dimensional analysis that the crack-tip opening displacement depends on only one non-
dimensional variable H/Rp,

/H\ K*
§=fr (R_p) By’ (12)

The parametric function f, will now be determined using the finite element method out-
lined in Section 2.1, except that the mesh near the crack tip is replaced by that shown in
Figure 8(b).

Plot of f> as a function of H/Rp is displayed in Figure 9, indicating that as the size of the
obstacle increases the crack-tip opening displacement decreases sharply. The results suggest
that a round obstacle is very effective in blocking the crack-growth driving force, with f>
reaching the minimum value at H/Rp = 0.5. This implies that the maximum enhancement in
fatigue crack growth resistance can be expected from brittle particles with a diameter equal to
half the crack-tip plastic zone size, provided the particles are not fractured by the high stress
level ahead of the advancing crack tip.

3. Blocked-slip models

In analysing the blocking effect of microstructural obstacles on the growth of short cracks,
blocked-slip models have been developed for the crack-tip sliding and opening displacements
which consider grain boundary blockage (Tanaka et al., 1986; Navarro and de los Rios, 1987,
1988, Wang, 1996). This type of model can qualitatively simulate the observed decelera-
tion/acceleration in fatigue crack growth rates as the crack grows through periodic obstacles.
Nevertheless, it should be pointed out that these models have been developed for shear mode
cracking and later extended to tensile mode crack growth by appealing to the Dugdale model
for plane stress, i.e., plastic deformation is assumed to occur within a narrow strip ahead of
the crack tip. The results displayed in Figure 4 clearly suggest that such an idealisation is over
simplified and does not reflect the lateral expansion of the plastic zone. To further elucidate
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this point, it is insightful to examine the behaviour of the blocked strip-yield model, with
a view of circumventing the deficiencies. To this end, the blocked strip-yield model is first
assessed and then an extension of Rice’s double-slip model is proposed to account for the
interaction of a plane strain crack with an elastic barrier.

3.1. BLOCKED STRIP-YIELD MODEL FOR PLANE STRESS

The essence of the blocked strip-yield model (Tanaka et al., 1986; Navarro and de los Rios,
1987, 1988) is to represcnt the crack and the plastic zone, which is assumed to be an infinitely
thin strip, by distributed dislocations with the Burgers vectors parallel (for shear mode) or
perpendicular (for tensile mode) to the crack planc. The cquilibrium equation determining
the dislocation distributions is identical to the standard Dugdale model in the form of the
Cauchy type of singular integral equation. However, due to the blocking of the barrier, plastic
deformation is not fully relaxed. Instead there is a stress singularity at the point where the
plastic zone intersects the barrier. In this case, the dislocation distribution is given by the
unbounded solution of the intcgral cquation (Navarro and de los Rios, 1987), from which
the crack-tip opcning displacement can be determined. For the particular case of small-scale
yielding, the following expression can be obtained, omitting the details of derivation,

b b K-

s§=|2/—— S
RP RP b(f)'

(b < Rp). (13)

which recovers the standard Dugdale solution when b = Rp. It is clear that the blocked strip
yield model predicts § — O as b/Rp — 0. However, the finite element results, as shown in
Figure 5, suggest that

5

5 — 0.49K— as b/Rp — Q.
oy
This large difference between the computational results and the blocked strip-yield model in
the small b/ Rp limit is essentially due to the overly simple idealisation of plasticity occur-
ring within a strip, which is obviously inconsistent with the finite element solution shown in
Figure 4. Therefore the assumption of strip yielding needs to be abandoned if an improved
analytical model is to be developed. This will be the subject of future work.

3.2. BLOCKED DOUBLE-SLIP MODLL FOR PLANL STRAIN

As shown in Figure 6, the plastic deformation under plane strain conditions tends to concen-
trate within bands inclined at an angle to the crack plane, lending support to the double-slip
model developed by Rice (1974). The double-slip model assumes that plastic relaxation occurs
by sliding on two bands at angles £¢ with the crack plane. These bands sustain a yield stress
) = O’y/x/g in shear, whose length is given by (Rice, 1974)

5

3z ., K
rp (¢):6—4s1n"¢[1+cos¢)|—2. (14)

Oy
The crack-tip sliding displacement is

5

E,(fy

. 3
8 = %sinzd)[l + cos | . (15)
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Figure 10. Blocked double-slip model, showing (a) geometry and (b) angle of the slip bands.

Hence the crack-tip opening displacement CTOD can be expressed as

2
(16)

82228 sing = ﬁ sin® ¢ [1 + cos @] .
4 Eoy
In the absence of an elastic barrier Rice (1974) showed that the inclination angle ¢ is that
which maximises the extent of the plastic zone, drp/3¢ = 0, leading to ¢y = cos*'% =
70.53°. For a given applied stress-intensity factor, the distance b at which the plastic zone just
reaches the interface can be readily determined,

bo = 1y (o) cos o = TR, (17)
where Rp = K?/3mo. This gives hy/Rp = 0.548, which is very close to that determined
using the finite element method b/ Rp == (.52 (see Section 2.2),

When the plastic zone interacts with the elastic barrier, the blocking action of the bar-
rier means that the plastic relaxation cannot occur in the optimum direction ¢y, instead, the
following geometrical relation must hold,

r, () cosp = b, (b/Rp < 7°/18). (18)

F-R/0702
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Now the angle ¢ (b/Rp) can be determined by solving the above equation. The results are
plotted in Figure 10, which reveals that the angle ¢ varies almost linearly with »/Rp, and
hence can be well approximated by the following expression,

¢:E*1—§<z—(/)(>>

5 (b/Rp <7 /18). (19)

£

Rp’

With the angle ¢ given by the above expression, the crack-tip opening displacement can be
readily computed using Equation (16) and the results are plotted in Figure 7. These results
indicate that in the small 5/ R p limit, predictions of the blocked double-slip model are in close
agreement with the finite element results, but not for large /R values. This is to some extent
due to the simplified representation of the plastic deformation by plastic shearing along two
bands of zero thickness, The actual plastic deformation under plane strain condition, as shown
in Figure 6, tends to diffuse over a large area, especially before the plastic zone reaches the
barrier.

4. Large-scale-yielding solutions

In the preceding analysis it has been assumed that small-scale yielding, at least at the scale of
the microstructure, would prevail, However, for fatigue cracks to initiate in a polycrystal with-
out stress concentrators, the applied stress generally exceeds the limit of small-scale yielding.
Therefore it is important to extend the above analysis to consider stage | crack experiencing
large-scale or even gross-section yiclding. For simplicity, the case of a centre crack in an
infinite, homogeneous, material will be considered first. The CTOD results for plane strain
are plotted in Figure 11(a), together with the calculations based on the moditied Dugdale
model (Equation (6)) where the yield stress is replaced by «woy. Here the parameter « denotes
the plasticity constraint factor for planc strain deformation (Newman, 1998). The reason for
the underestimation of the crack-tip opening displacement by the modified Dugdale model is
primarily due to the loss of plastic constraint associated with large-scale yielding. A simple
interpolating function can be constructed to correlate the computational results,

K* |: o :|

S~ = 0.564 |+ A—|. (20)
E(Ty Ty

where A = 0.758. Here the subscript oc is used to denote the CTOD solution for a crack

far removed from any elastic barrier. This result will be employed later (o determine the

dependence of fatigue limit on crack length.

Consider the case of a crack embedded in an elastic-plastic grain surrounded by an elastic
domain, as shown in Figure 2(a). with the applied stress approaching or exceeding the yield
stress of the grain that contains the crack. Since the crack-tip opening displacement will
decrease as the crack tip approaches the grain boundary, the most significant case in terms
of continuous growth or crack arrest is the condition when the crack tip reaches the barrier.
In the following attention will be restricted to this limiting case. It can be shown by dimen-
sional analysis that the crack-tip opening displacement can be expressed in the following
non-dimensional form,

(C?
Sy = ueng - (21)
0
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Figure 11. Large-scale yielding solutions of the CTOD for (a) an edge crack in a homogeneous matcrial and (b)
an edge crack with its tip terminating at an elastic barrier.

where g5 = oy/E and the function g needs to be determined by computational methods. The
results of the finite element analysis under plane strain conditions are shown in Figure 1 1(b).
It can be seen that at low stress, o/oy < 1, the crack-tip opening displacement scales with the
square of the applied strain (or stress). At high stress, however, CTOD tends to increase almost
linearly to the applied strain. Based on the finite element solution the following interpolating
function can be constructed,

/o) h© K
I + B (g/ep)" 1+ B(g/e)" Eoy’

where B = 0.604, m = 1.65, and f; (0) is given by Equation (11), i.e., fo (0) = 0.428, which
is consistent with the small-scale yielding solutions.

8o = fo Q) magy for o <oy, (22)
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5. Plasticity induced fatigue crack closure

The preceding results can be extended to cyclic loading, provided that crack faces do not come
into contact during the load cycle. However, fatigue crack closure, especially that induced
by the plastic wake left behind by an advancing crack, occurs even when the minimum
stress in a loading cycle is tensile (Elber, 1970). The concept of crack closuve is critical
to rationalising almost every aspect of fatigue crack growth, such as the mean stress elfect
and the sequence effect associated with spectrum loading. It is worth recalling two important
results regarding plasticity-induced crack closure. Under constant K-loading, Budiansky and
Hutchinson (1978) presented an elegant solution for the problem of steady-state crack closure,
where the residual plastic wake behind the advancing crack tip is of constant thickness. For a
crack growing under constant amplitude load. however. the plastic wake thickness increases
linearly with increasing crack length, giving rise (o se¢l/-similar crack closure (Wang and Rose,
1999b; Rose and Wang, 1999). The results presented in Section 3 highlight two important
differences between a crack in a homogencous material and a crack advancing towards an
elastic barrier. First, the crack-tip opening displaccment decreases as the crack tip approachcs
the barrier, indicating that the plastic wake thickness would decrease with increasing crack
length. Secondly, the mode of plastic flow changes dramatically duc to the interactions with
barriers, as displayed in Figure 6. Therefore, il is important to quantify how the interactions
with elastic obstacles will affect the plasticity-induced crack closure.

In the present study the crack closure behaviour is analysed by the finite clement method,
which involves introducing two sets of bi-lincar spring-elements along the crack plane. One
set of springs, which have rero stiffness in tension and infinite stiffness in compression, arc
attached (o all the nodes along the crack plane (ahead as well as behind of the crack tip)
to prevent crack faces from overlapping under compression. Another series of tension-only
spring elements, which have infinite stiffness in tension and zero stiffness in compression,
are attached to the nodes ahcad of the crack tip to maintain the zero displacement condition
under tension. To quantify the effect of plasticity-induced crack closure, the finite element
model is subjected to a cyclic load while one tension-only spring element is released (hence
crack grows by element width} after every two cycles. The crack-closure stress (o) and the
crack-opening stress (o,,,) are defined as the stresses at which contact or separation occurs at
the nodes immediately behind the crack tip. Plots of the crack-closure stress o, are shown
in Figure 12. It is clear that the crack-closure stress increases as the crack tip approaches
the elastic obstacle. Due to crack face closure. the cyclic crack-tip opening displacement ASJ,
which is dictated by the effective stress range Ao = 0.« — 0., Will decrease even faster
than the maximum CTOD as the crack tip approaches the obstacle. The rapid reduction in A
implies that fatigue crack-growth rates will decrcase sharply as the crack tip grows towards
the barrier, consistent with some experimental observations (Sugimura et al., 1995).

In the case of small-scale yielding conditions, A8 can be readily determined from equations
(10), provided that K is replaced by A K., (Budiansky and Hutchinson, 1978),

b\ AKZ
A8 = f; — 23
fo (R;m-) 3o, (23)
where AK.y = U - AK. the function f; is given by Equation (11) and Rp . denotes the cyclic
plastic zone size,

I ( AKer\
Rp., : (24)
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Figure 12. Crack-closure stress for an edge crack approaching an elastic barrier.
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Figure 13. Effective stress ratio U for an edge crack in a homogeneous solid and an edge crack terminating at an
clastic barrier.

Here the effective stress ratio U is defined as,

Omax — O/
U=—"—. (25)
Omax — Tmin
Under large-scale yielding, the cyclic crack-tip opening displacement A$ can be determined
by a similar method from Equations (22) or (20) provided that ¢ is replaced by U-Ac, and
oy is replaced by 2oy . Under fully reversed loading, i.e., R = —1, the effective stress ratio U
depends on only one non-dimensional parameter Ao /20y. Figure 13 shows the finite element
solution of U for various stress ratios, which can be correlated by the following equation,

Ao\
U1:C|+(1—C1)(2—> , (26)

Oy
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with € = 0.41, C, = 2.38 for the case of no interaction between the crack-tip plastic zone
and the elastic barrier,

] Ao\
Us=C3+ (1 =Cy) 4) (27)

2(7)'

and C3 = 0.38, Cy = 3.96 for the casc when the crack tip terminates at the barrier.

6. Fatigue limit and threshold of small fatigue cracks

With the merging of fatigue and fracture mechanics approaches (Newman, 1998), tatigue limit
1s now considered to be synonymous with fatigue crack growth threshold (Miller, 1993a), pro-
vided the effects of large-scale yielding or gross-section yielding experienced by small cracks
are adequately taken into account. A key requirement to a rigorous mechanistic approach to
analyse the large-scale yielding bchaviour of small fatigue cracks is a suitable correlating
parameter which can establish a similitude between short and long cracks (Wang and Rose,
1999a). In the present study, let us adopt the cyclic crack-tip opening displacement as the
correlating parameter, and the growth rate follows a general relation,

da .

v = h (A8, Ay (28)
where Ad,;, represents a threshold value which may depend on environment and temperature
for a given material. This threshold value may be due to intrinsic material resistance or crack
surface roughness, both are not considered in analysing the plasticity-induced crack closure.
For a given material, the function /1 can be determined using standard specimens.

The present results reveal that as the crack approaches a microstructural barrier, the cyclic
crack-tip opening displacement A$ decreases, whereas the stress concentration at the barrier
increases. Therefore the fatigue limit of a polycrystalline material could be related to the
stress below which (i) the A$ is less that the threshold value A8, ;,, and (i1) the crack is unable
to initiate new slip across the microstructural barrier. Therefore determination of the fatigue
limit of a component containing a crack of length « requires solving a set of coupled equations
representing the alorementioned conditions. However, two bounds on the fatigue limit stress
range Ao, can be obtained assuming that the fatigue limit corresponds to (1) the onset of
interaction and (2) crack tip terminating at the barricr (b = 0), respectively. These two bounds
will be termed as Model | and Model 2. As will be seen later, the two bounds are virtually the
same for medium applicd stress Aoy /20y < 0.7

Under fully reversed loading (R = —1), the lower bound can be mathematically expressed
as,
AK i Up (O]
Soo (Uy Aoy [207) = 0.5641 2K UL O] (29)
2E(Iy

where the function 4. is given by Equation (20) and U, is given by Equation (26). In partic-
ular, Uy (0) = C; = 0.41. Then the stress-intensity factor threshold is be related to the stress
level at which the threshold value is measured via the following cquation,
AKy U () 1
A[(Ih’)o - Ul \/T+Al/| 'A(I[.‘[_/Z(I)"

(30)
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ratio on the cyclic crack-tip opening displacement, which will allow further unification of
experimental data obtained under various mean stresses.

7. Conclusions

Basic solutions of the crack-tip opening displacement and the plasticity-induced crack closure
for a mode | fatigue crack growing towards elastic obstacles have been determined using
an elastic-plastic finite element method. The results show that for a given applied load the
crack-tip opening displacement decreases as the crack-tip approaches the interface boundary,
but reaching a non-zero value when the crack tip reaches the barrier. Under fully reversed
cyclic loading, the plasticity-induced crack closure has been found to increase as the crack
grows towards the barrier. A mechanistic model is proposed to relate the fatigue threshold of
microstructurally small fatigue cracks to the cyclic crack-tip opening displacement reaching a
critical value. Predictions of the model correlate reasonably well with experimental data.
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