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Edge-cracks in single crystals under monotonic and cyclic loads
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Abstract. Basic solutions are obtained for edge-cracks lying along the primary slip plane in a single crystal. The
study is motivated by Stage 1 fatigue crack growth wherein crack orientation is controlled by the slip direction
and continued growth is dependent on the crack overcoming barriers to slip. Plasticily is assumed to occur as slip
along planes inclined at 45° to the surface. Problems where slip is limited to persistent slip bands are considered
side-by-side with the problem where slip is not confined. Results for both monotonic and cyclic loadings are
presented, with emphasis on the crack tip opening and sliding displacements. Both small and large scale yielding
are considered. Preliminary results are given for interaction with barriers to slip, such as a grain boundary.
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1. Introduction

Under cyclic loading, single crystals of certain metals are observed to develop small fatigue
cracks parallel to persistent slip bands (PSBs), usually along one of the boundaries between the
band and the surrounding crystal (Ma and Laird, 1989). Cracks are nucleated with densities
comparable to the density of the PSBs (e.g., as many as hundreds per centimeter (Ma and
Laird, 1989)). Nucleation of these cracks is thought to be connected with the build-up of local
stresses and extruded material where the PSB intersects the surface of the crystal (see Repetto
and Ortiz (1997) for recent developments and relevant references). Under continuing cyclic
loading, a few of the cracks grow large enough to become full fledged fatigue cracks, but
the vast majority appear to arrest and remain innocuous. In the observations of the copper
single crystal by Ma and Laird, the width of a PSB is on the order of one micron, while
the typical arrested crack extends several microns or more into the crystal from the surface.
Those that become full fledged fatigue cracks continue growing beyond this length. The early
stages of cracking for crystals and for structural polycrystalline metal alloys which do not
form persistent slip bands is thought to be qualitatively similar to that just described. Small
cracks undergo Stage I growth along favorably oriented primary slip planes at approximately
45° to the surface and either arrest at some barrier or succeed in transitioning to Stage II and
become a small mode I crack (Miller, 1993; McDowell, 1996).

The aim of the present study is to provide some basic results for 45° edge-cracks that
will be useful in formulating a mechanics of Stage I fatigue crack growth. Three situations
are depicted in Figure 1: a crack lying along the direction of the slip plane where slip is not
confined in (a), and a crack lying along one side or the other of a PSB in (b) and (¢). The slip
planes and the band are oriented at 45° measured from the surface of the crystal, corresponding
to the plane of maximum shear stress magnitude for inplane stressing parallel to the edge. The
crack has length a. The band width 1s w for the PSB models. Two-dimensional, plane strain
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Figure 1. A 45° edge-crack aligned with the slip plane in a single crystal and subject to inplane tensile stress o.
(a) Unconfined slip. (b) and (¢) Slip confined to a band of width w above or below the crack.

conditions are assumed with a remote tensile stress o acting parallel to the free surface of the
crystal. The elastic properties of the crystal are taken to be isotropic with Young’s modulus E
and Poisson’s ratio v. The model will be investigated under monotonically increasing ¢ and
under tensile loadings where o is cycled between minimum and maximum values. In the last
part of the paper, barriers to slip will be modeled to assess their effect on deformation at the
crack tip.

When plasticity is completely suppressed, the elastic stress intensity factors K; and Ky; for
an inclined edge-crack have been given by Isida (1979). For an edge-crack of length a at 45°
to the free edge of a semi-infinite plane, slanted downward as in Figure 1,

K, =07050+ma and K; = —0.3640/ma. (1.1)

Thus the mode ratio, K/ K; = —1/2, pertains approximately for this crack when the stress is
such that small scale yielding applies.

Only slip on the primary slip system is allowed. The mutually orthogonal slip direction
and slip plane normal are designated by (t, n). The slip system is modeled as elastic-perfectly
plastic with slip activated by a critical resolved shear stress ty. For the PSB problems, slip is
confined to a band, whereas in the other case slip is free to occur where the resolved shear
stress exceeds ty. The nonzero plastic strain rate component is

- p < p l .
Enr = & = 3V (1.2)
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where the slip rate ¥ must be consistent with

y 20 for o, =1y, y <0 for o, =-1y, and
y =0 for oyl <1y, (1.3)

where 7,,; = ojjnit;.

The components of the crack tip displacement are denoted by (4;, §,), corresponding to
tangential sliding and a normal opening components. Amplitudes of the changes in these
components in steady cycling between oy, and o,y are denoted by (AS,,Aé,). The range of
the cyclic applied stress is assumed to be such that crack closure does not occur. Crack tip
displacements are featured in this study. At the level of the continuum modeling pursued here,
these measures of crack tip deformation are likely to the most useful for correlating fatigue
crack growth. The magnitudes of the two tip components change relative to one another as the
scale of yielding changes and as the tip encounters obstacles. It remains an important open
task to identify crack growth criteria under mixed mode conditions.

2. Numerical models

Two types of numerical models have been employed to analyze the various problems posed in
this paper. Primary emphasis has been put on obtaining relationships between the components
of crack tip displacement and the loading history. A finite element model with a grid specially
designed for single slip plasticity has served as the primary numerical method. Features of the
solution brought out by the finite element results reveal that in some instances an extended
Dugdale (1960) — Barenblatt (1959a, 1959b, 1962) model can provide an effective approxim-
ation. When applicable, the double slip zone model has certain numerical advantages over the
finite element model.

2.1. FINITE ELEMENT MODEL

In the elastic-plastic material with single slip specified by (1.3), the total strain rate is taken
to be the sum of an elastic part and a plastic part, &; = &]; + /. The elastic part satisfies
Hooke’s law, ¢ = ¢;;1,€;,, where £;;;; are the elastic instantaneous moduli. The plastic part
satisfies &/, = yay; (see also (1.2)), where a;; = 2(s;n; + s;n;) in terms of the slip direction
s; and the slip plane normal n;. Then, the elastic-plastic incremental constitutive relation 1s of
the form

0ij = Lijrién, Lijr = ijur — uM;; My 2.0

where u = 1/(auyM,,,) for plastic yielding and p = O for elastic unloading. Furthermore,
M;; = Ea;;/(1 + v), in terms of Young’s modulus E and Poisson’s ratio v.

The requirement of equilibrium is specified in terms of the incremental principle of virtual
work. Approximate solutions are obtained by the finite element method, using the incremental
constitutive relation (2.1) in the principle of virtual work. The element approximation of the
displacement components is based on eight-noded isoparametric elements, and the integra-
tions within each element, needed to compute the incremental stiffness matrix, are carried out
using 2 x2-point Gaussian quadrature.

Two types of boundary conditions are used in the present analyses. When conditions of
small scale yielding are considered, a circular region is analyzed with displacement boundary
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conditions prescribed on the outer edge in agreement with the mixed-mode singular elastic
crack tip fields. When an edge-crack in a specimen under uniaxial plane strain tension is
considered, a rectangular region is analyzed with uniform axial displacements and zero shear
stress prescribed on the ends. The lateral sides are traction-free. The traction-free edge-crack
inclined to the tensile direction is located at the middle of one of these traction-free sides.

The grid near the crack tip is particularly chosen to represent the characteristic near-tip
strain fields. There is a tendency for plastic slip to concentrate in a narrow band along the
extended crack plane ahead of the crack tip. In case of a finite size specimen, this narrow band
eventually develops into a slip band which extends across the specimen. Some of the present
computations have been continued until this stage, where the overall tensile load approaches
the limit load for the cracked crystal. With the deformation mechanism allowing for single
slip in directions parallel to the crack plane there is also a tendency for concentrated plastic
shearing to develop from the crack tip in a direction perpendicular to the crack plane (and thus
perpendicular to the slip planes). As discussed by Saeedvafa and Rice (1992), the slip system
(1.2) allows concentrated shearing along planes perpendicular to the slip plane (interpretable
in dislocation terms as a kink band), as well as in directions parallel to the slip plane. To
represent localized yielding in these two characteristic directions, the near tip mesh has been
specially designed with narrow element bands of constant width along these directions, as
seen in Figure2. Comparison with analyses for a standard mesh at a crack tip, with the mesh
defined by radial lines focused on the tip, has shown that the narrow bands of uniform elements
near the crack tip in Figure 2 are important for the accuracy.

Examples of plastic zones are illustrated in Figure 2 in terms of dots in deformed meshes,
where a dot is drawn at integration points currently undergoing plastic yielding. Figures 2(a)
and (b) are obtained for Ky1/K; = —1/2 under small scale yielding (full details of the models
are given in the next section), in one case for the PSB above the crack plane and in the other
with the band below. Figure 2c, shows a portion of the mesh and yielded elements for large
scale yielding of the full edge-cracked geometry, in this instance for the case where slip
can occur wherever the critical shear stress is attained on a slip plane. Concentrated plastic
shearing on the extended crack plane and perpendicular to the crack plane emerging from
above the tip is clearly seen in Figure 2. The concentrated shearing is accompanied by diffuse
plastic shearing, usually in one of the two directions but not the other.

Crack tip displacements (4,, §,) are sensitive to near tip mesh layout. The opening and
sliding displacements behind the tip have a fairly steep variation with distance » back from
the tip (Saeedvafa and Rice, 1992), such that the derivative of these quantities with respect to r
can be logarithmically singular at the tip. To accurately compute (§;. §,), it is best to use crack
face displacements at points behind the tip and extrapolate to the tip. If d§/dr = A — B In(r),
then near the tip,

§=Ar — B(rinr —r)+86(0). (2.2)

where §(0) is the desired value at the tip. One method which has been employed here is to fit
(2.2) to sets of values at three points r behind the tip, providing the extrapolation for (§;, §,).

2.2. DOUBLE SLIP ZONE MODELS

As evident in Figure 2, much of the plastic deformation occurs by concentrated shearing on
the extended crack plane and on the plane perpendicular to it that emerges from the crack
tip. Tf one is willing to neglect the contribution of diffuse plastic deformation in regions off
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Figure 2. Examples of the near ip finite element mesh and zones of plastic yielding, as indicated by dots at
integration points where the yield condition is met. Strips of narrow elements of uniform width are incorporated
in the mesh on the extended crack plane and emerging from the tip at 90° to the crack plane. These are required
to represent the localized slip along the slip plane and perpendicular to it. Cases (a) and (b) are for small scale

yiclding with slip confined to a band either above or below the crack plane. Case (c) is an cxample of large scale
yielding where slip is unconfined.

these two planes, one can employ a double slip zone model akin to the Dugdale—Barenblatt
Model. In the present plane strain model for the single crystal, the tangential displacement
is allowed to be discontinuous across the slip zone when the resolved shear stress attains
Ty. One advantage of the double slip zone approximation is there exist efficient numerical
methods for solving the integral equations for the distributions of the ‘dislocations’, dé/dr,
that become the unknowns in these formulations. Several such examples are solved in this
paper for the purposes of illustrating the approach. Another advantage of these models is that
the two crack tip displacements (§,, 8,) are readily expressed and computed in terms of the
dislocation distributions. As is standard in such models, the extent of the zone is determined by
the condition that the stresses are bounded at the end of the zone, assuming it is not blocked.
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Figure 3. Conventions in small scale yielding. Slip is unconfined in (a), while it is confined to a band of width w
above or below the crack plane in (b) and (c). The slip planes are parallel to the crack plane.

3. Small scale yielding

3.1. PURE MODE REFERENCE CASES

Two small scale yielding results will serve as useful references in the present study. In pure
mode Il (K; = 0, with monotonically increasing Ky in Figure 3) the analog of the Dugdale—
Barenblatt Model applies with slip confined to the single plane coincident with the exten-
ded crack plane directly ahead of the tip. The normal component of the crack tip opening
displacement, é,, 1s zero and the tangential component, §,, is given by

2
2 K[l

& =(1—v (3.1)

E'L'y

The extent of the plastic slip zone ahead of the tip is R, = (r/8)(Ky/7y)?. If frictional effects
between the crack faces are ignored, the amplitude of the change in 6, in each cycle under a
steady cyclic loading history with the mode 11 stress intensity factor varying between K™
and K™ is
| ) AKG
A = 5(1 —v)—, (3.2)
- E'L'y
where AKy = K[ — Kin,

When the small scale yiclding conditions are pure mode I (K = 0 in Figure 3a), the
solution for monotonically increasing Ky has been given by Saeedvafa and Rice (1992) for
the case where slip on any plane parallel to the crack is possible. The tangential sliding
displacement is zero while the opening displacement at the tip is

K2
§p = 0.26——  (forv = 0.3). (3.3)
E‘['y )
The amplitude of the tip opening displacement under steady cyclic loading between K™" and
K[max iS

AK}
Ty

A8, =0.13 (forv = 0.3), (3.4)
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where AKy = K™ — K]“““, assuming no contact occurs between the crack faces.
3.2. MONOTONIC LOADING WITH K /K; = —1/2

Under monotonic stressing, the edge-crack in Figure 1 satisfies small scale yielding for applied
stresses ¢ up to approximately one half of the tensile yield stress of the uncracked crystal, i.e.
for o as large as about 7y. Under steady cyclic loading, the range of applicability of small
scale yielding is considerably larger (i.e., Ao as large as about 21y), as will be discussed later.
Thus, with reference to Figure 3, consider the small scale yielding limits of the three problems
of Figure 1 where a semi-infinite crack is remotely subject to a mixed mode elastic field with
amplitudes (K7, Ky1). For monotonic loading, the solution will be presented in the form

2 2

K K
8 :c,,E—‘ and 8, = ¢,—L. (3.5)

Ty E'L'y
For the problem in Figure 3(a) where plasticity is not confined to a band, the coefficients
(¢;, ¢,) are independent of the stress intensities, assuming Ky /K| is fixed at —1/2. A crude
estimate of the extent of the plastic zone perpendicular to the crack line is

I /KN ,
R,=—|(— (3.6)
O Ty

This quantity serves as a useful scaling length for presenting the solution. For the two PSB
problems in Figures 3(b) and 3(c), the coefficients (¢;, ¢,,) will depend on R,/w when the
plastic zone is large enough such that it reaches across the PSB. Small scale yielding in the
present context only requires that the maximum extent of the plastic zone be sufficiently small
compared to the crack length. No restriction is placed on its interaction with the boundaries
of the PSB.

The coefficients in (3.5) for the problem in Figure 3a where slip is not confined are

cp =035 and ¢ = —0.64. (3.7)

Comparison with the pure mode cases in (3.1) and (3.3) reveals that the nonlinear interaction
between the modes under mixed mode loading is not exceptionally strong. At comparable
stress intensities, the opening displacement is increased by about 20 percent in the presence
of the mode IT component, while the tangential sliding displacement is lowered by about 30
percent when coupled with the mode 1 component. Plots of (¢,, ¢,) as a function of R, /w for
the two PSB crack problems are shown in Figure 4, together with the values (3.7). (In small
scale yielding, the difference between a crack located on one side of the PSB versus the other
can be captured by changing the sign of Ky without changing the location of the crack relative
to the band. However, the PSB results in Figure 4 all have K < 0 with the crack on top of
the band in one case and below it in the other.)

3.3. CYCLIC LOADING WITH K\ /K| = —1/2

The solution for steady cyclic loading between maximum and minimum stress intensities
(with K/ K| fixed at —1/2) follows immediately from (3.5) for the case in Figure 3(a) where
slip is not confined to lie within a band. With AK; = K" — Klmi" and AKy = K™ — Kﬂ“i“,
AK}? CAK]

Le, By and A8 = I, oy’ (3.8)

AS, =
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Figure 4. The coefficients specilying the crack tip displacement components in (3.5) for monotonic stressing of

the 45° edge-crack under small scale yielding. The length quantity R, is defined in (3.6), and w is the width of
the band of confined slip in two of the three cascs shown. In the third case, slip 1s not confined.

where ¢, and ¢, have been given (3.7). The argument for the validity of this simple conversion
of the monotonic solution to the cyclic solution is essentially the same as that put forward
by Rice (1967) in his analysis of Mode III cracks in elastic-perfectly plastic solids. In small
scale yielding, the monotonic solution necessarily has the property that once slip starts at
any point it continues with the magnitude of the resolved shear stress unchanging at ty.
Yielding spreads in a self-similar manner. When the applied stress intensity factors decrease
from their maximum values, the changes in the stresses, strains and displacements are related
to the changes in stress intensities precisely by the monotonic solution (with due regard for
sign changes) if 7y is replaced by 27y. Any point which undergoes reversed yield will have
experienced a change in shear stress from 4ty to 71y, and the superposition of the changes
calculated with a yield stress 27y exactly represents the behavior. The portion of the steady
cycle wherein the stress intensities are reversed once more and brought back to their former
maximum values is again characterized by changes computed from the monotonic solution
with a yield stress of 27y. At the top of the cycle, the stresses and the crack tip displacements
return to the values they had before any load reversal occurred.

The shape of the active zone which experiences cyclic plastic strains under steady cyclic
loading in small scale yielding is precisely the same as that of the zone under monotonic
loading, but the size scales with (AK /2ty )? rather than (K. /7y)>. It follows that the size
of zone of cyclic plastic strains is exactly (1/4)(AK /K . )? times the size of the monotonic
plastic zone at K. In particular, for cycling between K,z and K, = 0, the cyclic zone
is one quarter the size of the monotonic zone, neglecting any possible effects of crack clos-
ure. The relatively small size of the cyclic plastic zone has important implications for the
relevance of the small scale yielding results. Even when the maximum applied stress drives
the monotonic problem well into the large scale yielding range, the cyclic problem may still
satisfy small scale yielding. Specifically, cyclic problems for the finite edge-crack geometries
posed 1n Figure | remain within the small scale yielding range for cyclic stress amplitudes,
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Ao, less than about 27y. Thus, for example, steady cycling between zero stress and a stress
level approaching overall yield at ¢ = 27ty is still governed by small scale yielding. These
considerations highlight the importance of small scale yielding under cyclic loading.

Conversion of the results for monotonic loading to cyclic loading somewhat less straight
forward for the PSB cracks because of the dependence on the band width through the para-
meter R, /w. Inspection of the numerical solution to the monotonic problem has indicated that
it has the property that points which yield undergo no subsequent elastic unloading. This is
the necessary condition such that the solution for steady cyclic loading between K« — AK
and K., can be constructed by the procedure described above using the monotonic solution
with 7y replaced by 2ty. The construction is as follows. Display the dependence of ¢, and ¢,
on R, /w shown in Figure 4 explicitly by writing ¢,(R,/w) and ¢, (R, /w). Define a quantity
for the cyclic problem analogous to R, in (3.6) as

1 [AK\° ;
AR, = — (—‘) . (3.9)
O \ 21y

Then, the cyclic crack tip displacements are given by

AK} AK? |
A8, = e, (AR,/w)—— and A8, = j¢, (AR, /w)——, (3.10)
B Ety - Ety
where, as before, attention is limited to AK) = —AK,/2. The condition that no elastic

unloading occurs in solution for monotonic loading ensures that the superposition employed
in constructing the cyclic solution is valid. For single slip plasticity there are no additional
complexities associated with nonproportional plastic deformation.

It can be seen from the plots in Figure 4 that the dependence of ¢, and ¢, on AR, /w is
quite weak for AR, /w greater than about 2. For AR, /w less than 2, the dependence can
become important. For example, in the case where the PSB lies above the crack, the fact that
¢, decreases with increasing AR, /w while ¢, increases in magnitude means that there is a
range where A, becomes larger than A§,.

4. Edge-crack in large scale yielding

The three 45° edge-crack problems in Figure | are now considered for monotonically increas-
ing o. The results are presented as the stress dependent coefficients C, and C, in

g 02(1 a 02(1 .
5, =Co [ —12ZL and s =c () ZZL 4.1
21y /) Ety 2ty ) Ety

For the two PSB problems the coefficients also depend on w/a. Within the small scale yielding
range, coinciding approximately with o/(2ty) < 1/2, the two sets of coefficients in (3.5) and
(4.1) are related by

C,=156lc, and C, =0.416c,. (4.2)

The coefficients are plotted in Figure 5. The small scale yielding limit as given by (4.2)
with (3.7) is included in Figure 5(a) for the problem with no restrictions on the zone of
plastic yielding (C,, = 0.55 and C; = —0.27). Both components of the crack tip displacement
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Figure 5. The coefficients specifying the crack tip displacement components in (4.1) for monotonic stressing of
the 45° edge-crack under large scale yielding. (a) Unconfined slip. (b) Slip confined to a band of width w above
the crack plane. (¢) Slip confined to a band of width w below the crack plane.

experience large amplification due to large scale yielding, in the range o/(2zy) > 1/2. The
PSB problems display some dependence on a/w, but surprisingly little over the range of
values of a/w chosen in Figure 5. The tangential component of the tip displacement follows
the behavior of the problem with unconstrained yield. On the other hand, the band severely
constrains the magnitude of the opening component in the large scale yielding range compared
to the case where slip is not confined. An unexpected trend is noted in Figure 5(b) for the case
where the PSB lies on the upper side of the crack. The normal component of the crack tip
displacement is larger for the narrowest band (a/w = 9) than for the wider bands (¢/w = 6
and 3). This trend is a consequence of the nonlinear coupling between the opening and tan-
gential tip displacements under the mixed mode loading. Note that the tangential component
is diminished by the narrowness of the band. These same trends can be inferred from the small
scale yielding results in Figure 4, although they are obscured by the nondimensional variables
used in that figure.

The double slip zone model discussed in Section 2.2 can be used to approximate the prob-
lems in Figures | and 3. As mentioned in Section 2.2, well established numerical methods for
integral equations can be employed to generate results, and crack tip displacement components
are readily extracted. A set of results for C,, and C, in (4.1) for the two PSB problems is given
in Figure 6. Included is the result for §, for the limit of a band of zero width (w/a = 0 such
that 5, = (), and results for bands of small width, w/a = 0.05, located on one side of the
crack or the other. These numerical results are in reasonable agreement with the finite element
results for the unapproximated model, and the general trends are in close accord.

As has already been emphasized, the responses under steady cyclic loading should be well
characterized by the small scale yielding results given in the previous section, assuming that
Ao is less that about 2ty

5. Barriers to slip

To obtain some insight into the effect of barriers to slip such as a grain boundary, two vari-
ations of the 45° edge-crack problem have been analyzed. The first imposes a boundary a
distance D along the crack plane from the edge, across which slip is completely blocked.
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Figure 6, The coefficients specifying the crack tip displacement components in (4.1) for monotonic stressing of
the 45° edge-crack under large scale yielding as computed using the double slip zone model of Section 2.2. Three
cases are shown: a single slip zone on the extended crack plane for which C;; = 0, and double slip zones with
a/w = 20 modeling bands above and below the crack planc.
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Figure 7. The coefficients specifying the crack tip displacement components in (4.1) for monotonic stressing of
the 45° edge-crack under large scale yielding where slip is blocked a distance D from the edge in the slip direction.
Slip confined to a band of width w above the crack in (a) and bclow the crack in (b), in both cascs with a/w = 9.
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Figure 8. The coefficients specifying the crack tip displacement components in (5.1) for monotonic stressing of
the 45° edge-crack under large scale yielding where slip is blocked a distance D from the edge in the slip direction.
Slip confined to a band of width w above the crack in (a) and below the crack in (b), in both cases with a/w = 9.
These are the same results shown in Figure 7, but here another normalization is employed to better reveal the
influence of crack length at different positions of the crack relative to the slip barricr.

Only elastic deformations occur across the boundary. The second variation permits slip across
the boundary, activated by the same critical shear stress ty, but on a plane oriented at an
angle o relative to the slip plane in the cracked crystal. In both instances, monotonic loading
is considered, but the effects are expected to carry over to cyclically loaded cracks as they
approach slip barriers and their plastic zones are restricted.

5.1. BLOCKED SLIP

Plots of C,, and C, as defined in (4.1) are given in Figure 7 for five values of D/a. The
values for the largest value, D/a = 10, essentially coincide with the limiting case D/u = oo
presented earlier in Figure 5. For values of o/(27y) less than 1/2, there is no eftect of the
barrier even when D/a = 1.25 because the plastic zone has not yet reached the boundary.
For larger applied stresses, the plastic zone is blocked by the boundary, depending on D/a,
and the tangential component of the tip displacement, §,, becomes substantially reduced. The
opening tip displacement is much less affected. The magnitude of the opening displacement
becomes comparable to the tangential component when D /a is about 1.25.

The normalization (4.1) used for the tip displacements in Figure 7 is not convenient for
seeing the influence of the boundary on an approaching crack. This same set of numerical
data is replotted in Figure 8 using the following normalization which employs the boundary
distance in the normalization rather than the crack length:

TyD TyD
8, =k,— and 6, =k —. .
£ an 7 g 4.2)




Edge-cracks in single crystals under monotonic and cyclic loads 93

-(1-v3)k,

a/D
Figure 9. The coefficient &, in (5.1) governing the tangential tip displacement as predicted by a single slip zone

model with slip confined to the plane ahead of the crack tip. Slip is blocked a distance D along the plane from the
edge. The straight line segments ecmanating from the origin correspond to the region where the slip zone has not

yet reached the barrier.

-(1-v2)ky

a/D
Figure 10. The coefticient k; in (5.1) governing the tangential tip displacement as predicted by a single slip zone
model with slip confined to the plane ahead of the crack tip. Slip is partially blocked a distance D along the plane
from the edge. Beyond this boundary, the orientation of the slip plane changes. The results were obtained with a
model which permits slip only on the single planes shown in the insert.
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In this plot is evident that the crack tip displacements are larger as the crack travels across the
crystal at a given applied stress, but the boundary holds down the magnitudes at the higher
applied stress levels. In particular, the tangential tip displacement component peaks at a value
of D/a below 1.25 at the higher applied stress levels. Predictions for &, for the tangential com-
ponent of the tip displacement from a single slip zone model with slip blocked at the boundary
are plotted in Figure 9 against a/D. The straight line segments of the curves emanating from
the origin within the dashed-line curve correspond to the regime where the yielding zone has
not reached the boundary. Beyond the dashed-line curve, the boundary interferes with slip,
and the crack tip displacement is significantly reduced.

5.2. PARTIALLY BLOCKED SLIP

The model of Figure 9 is modified by allowing slip to occur across the boundary, but on a slip
system oriented at an angle other than 45°. The model depicted in Figure 10 permits slip at a
critical stress Ty, consistent with (1.3), on a single plane intersecting the primary 45° slip plane
at an angle w. The results in Figure 10 have been obtained for a small misorientation of the slip
planes, @ = 5°. Comparison of Figures 9 and 10, reveals that slip across the boundary does
have some influence on the tangential tip displacement, but even with a small misorientation
of the slip direction, the boundary serves as an effective block to the slip zone of the edge
crack.

6. Concluding remarks

The small scale yielding solution describes cyclic crack tip behavior under steady cycling
for a fairly wide range of stress because the cyclic plastic zone size is a small fraction of
the monotonic zone size. Under the assumption that small scale yielding does apply, the 45°
edge-crack subject to steady cyclic stressing between o, and o, experiences cyclic tip
displacements which can be obtained from (1.1), (3.1) and (3.3) (by replacing 7y by 27y as
discussed in Section 3.3) as

Ao’a Ac’a

and AS, = 0.135 , (6.1)
Ty Ety

A, = 0.275

where Ao = g — Omin- This result applies to the case where slip in the crystal is unconfined,
and there is no crack face contact. When an obstacle or grain boundary is sufficiently close to
the crack tip such that it interacts with the cyclic plastic zone, that interaction must be taken
into account. The solutions in the present paper provide some insight into such interactions,
but further studies will be needed to provide results which are applicable under cyclic loadings.
Most Stage 1 fatigue cracks appear to be arrested by obstacles or barriers (Miller, 1993), and
quantitative results for these interactions are needed to understand condition under which
arrest occurs.

Attention here has been limited to applied stress levels such that the crystal itself does not
experience overall yielding, In the range of cyclic stressing causing fatigue in a polycrystal, a
small fraction of surface crystals favorably oriented for slip are expected to experience overall
reversed plastic straining in each cycle. Were this not the case, it is unlikely fatigue crack
nucleation would occur. Thus, an important extension of the present study will be to con-
sider Stage I edge cracks lodged within favorably oriented crystals which experience reversed
plastic straining each cycle even when no crack is present.
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Components of the crack tip displacements have been featured in this study under the
assumption that these quantities provide average measures of crack tip deformation which
should provide a means of correlating crack growth rates. Further experimentation and more
fundamental modeling are needed to relate crack growth per cycle to the amplitudes of the
crack tip displacements under Stage I, when cracks tend to grow along the favorably ori-
ented slip directions. In particular, the effect on the growth rate of the ratio of the normal to
tangential tip displacements must be determined since the relative amplitude appears to vary
considerably, depending on the cyclic stress level and on proximity to obstacles to slip.
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