J. Am. Ceram. Soc., 78 |1] 251-53 (19953)

Role of Fiber Stitching in Eliminating Transverse Fracture in

Division of Applied Sciences, Harvard University, Cambridge, Massachusetts

A theoretical study of the feasibility of using fiber stitching
to prevent transverse matrix cracking in cross-ply ceramic
composites is reported. The prototype problem solved is
a curved composite beam subject to pure bending (the
C-specimen), which develops a transverse tensile stress o,
acting across its circumferential midplane. Fiber stitches
normal to this plane bridge a circumferential matrix crack
lying along the midplane of the specimen. Results are pre-
sented for the energy release rate of this matrix crack as a
function of a nondimensional parameter characterizing the
fiber stitches. Sufficiently large values of this parameter
ensure the applicability of the classical ACK (Aveston,
Cooper and Kelly) limit for a steady-state matrix crack sub-
ject to o,. The results obtained can be used to choose the
level of stitching such that transverse matrix cracking will
be excluded.

I. Introduction

N THIS note, a plane strain curved beam of cross-ply ceramic

laminate subjected to a bending moment M at the ends is con-
sidered, as shown schematically in Fig. 1(a) (M is defined per
unit width perpendicular to the plane in this figure). The com-
posite beam has inner and outer radii R, and R, with thickness
H = R, — R,. A moment with the sense of application shown
induces a transverse (radial) tensile stress acting perpendicular
to the circumferential planes. Let o, denote the transverse stress
acting on the midplane lying halfway between the inner and
outer radii, and let (¢ )., denote the maximum tensile circum-
ferential stress which occurs at the inner radius. The ratio of o,
to (G,)n.. increases as R,/R, decreases, but is always much
smaller than unity. For example, assuming material isotropy in
the plane of the specimen, ¢,/(0 )., = 0.051 forR /R, = 4/5,
0.087 for R /R, = 2/3, and 0.157 for R,//R, = 1/3. (A formula
relating ¢, and M for the case of circumferential anisotropy is
given by Lu et al.®)

Even though the transverse stress o, will be small compared
to the stress acting parallel to the specimen, this transverse
stress is cause for concern in an unstitched cross-ply, since there
is no mechanism to arrest a matrix crack once one becomes crit-
ical (see Fig. 2). This has been verified by the analysis of the
unbridged circumferential crack lying at the midplane between
the inner and outer radii. The normalized energy release rate for
an unbridged crack, G,, increases sharply as the subtending
angle, 26, increases, as shown in Fig. 3. These results were
taken from Ref. 2 and apply to the case of a cross-ply with iso-
tropic elastic properties in the plane of the specimen, where E_
is the cross-ply modulus. The results in Fig. 3 imply that a small
unbridged cracklike flaw will grow unstably to a significant
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length as soon as it becomes critical, as experiments on
unstitched C-specimens reveal. Such a cross-ply would be
unacceptably susceptible to transverse cracking and the ensuing
loss of bending stiffness that would entail. Transverse cross-
stitching is required to eliminate transverse matrix cracking, or,
at least, to ensure that significant stiffness loss does not accom-
pany transverse matrix cracking.

The problem addressed here is that of the circumferential
crack in Fig. | bridged by transverse fiber stitches. There are
two aspects to the problem. As might be surmised on intuitive
grounds motivated by the depiction in Fig. 1(b), the classical
ACK'? result for steady-state matrix cracking of a bridged
crack applies to this problem if the stitching is adequate. The
level of stitching required for applicability of the ACK formula
will be obtained. Given this applicability, one can then predict
the level of stitching needed to exclude transverse matrix crack-
ing, if that is the objective.
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Fig. 1. (a) Conventions for the curved composite beam with fiber
stitching across the surfaces of a matrix crack. (b) “Steady-state”
matrix crack propagating under stress o,.
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Fig. 2. Schematic illustration of the growth of a transverse matrix
crack in a 90° ply.

II. Analysis

The effect of the bridging stitching fibers is modeled in
exactly the same way that fiber bridging is treated in the analy-
sis of matrix cracks in unidirectional fiber-reinforced materials.
Specifically, the fibers are smeared out and replaced by a con-
tinuous distribution of nonlinear springs bridging the matrix
crack. The crack length 2¢ and specimen thickness H are
assumed to be large compared to the spacing of the stitching
fibers. Let (c,, E;, R;) denote the area fraction, axial modulus,
and radius of the stitching fibers. The area fraction of stitching
fibers will have to be fairly small (i.e., ¢, = 0.05) if stitching is
to be feasible. The fibers bridging the circumferential matrix
crack are assumed to debond and to slide relative to the sur-
rounding composite, resisted by a constant friction stress T.
Resistance associated with debonding is ignored, as is the effect
of any traverse residual stress. The bridging law relating the
effective crack opening displacement, 8(x), at a point x along
the crack to the bridging stress, p(x), is*

p(x) = BB()/2 ()

where

B 4ciE.E*T v
R e @

Here, E_ denotes the modulus of the “matrix” surrounding the
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Fig. 3. Nommalized energy release rate as a function of 6 for an
unbridged matrix crack in the curved beam.
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stitching fibers, which should be identified with the modulus
of the cross-ply in the transverse (radial) direction, and
E=cE+ (1~ cpE,.

The problem of Fig. 1 with Eq. (1) specified along the crack
has been analyzed using a finite element formulation, and
results will be reported below. If the stitching meets the
condition

BVH
VEon &

it will be seen that the energy release rate G of the crack is well
approximated by
207}
3p?
This is the ACK prediction'* for the situation depicted in
Fig. 1(b), where the bridged matrix crack responds to the local
midplane stress o, as if it were applied remotely to a straight
semiinfinite bridged crack advancing in steady state in an
infinite solid. Condition (3) ensures that the substantial crack
opening, which would occur for the unbridged crack, will be
suppressed by the stitching. This condition also ensures that the
major stiffness loss accompanying an unbridged circumferen-
tial crack will largely be eliminated.

Continue to let G, = G (B = 0) be the energy release rate of
the unbridged circumferential crack plotted in Fig. 3. The
energy release rate, G, of the bridged circumferential crack
shown in Fig. 1 can be expressed in either of the two following
nondimensional forms:

Gack = )

G/G, = F (0, BJH/\JE.a, R/R,) (5)
G/Gack = Fy(6, BNJH/\JE. 00, R/R,) (6)

where G, 1S given by Eq. (4). There is also a dependence, not
explicitly shown, on the Poisson ratio and on any nondimen-
sional parameters characterizing elastic anisotropy of the cross-
ply in the plane of the specimen. The numerical results reported
below in Figs. 4 and 5 are restricted to the case of elastic isot-
ropy in the plane with a Poisson ratio of 0.3.

A finite element procedure was used to obtain the crack tip
energy release rate as dependent on the stiffness of the stitching
fibers. Details of the finite element modeling are similar to those
described for the unbridged crack in Ref. 2. The nonlinear
bridging law (1) is implemented via the spring element pro-
vided in the finite element code aBaqQus. The energy release rate
G at the tip of the circular matrix crack is calculated by applying
an adaptation of the J-integral. A mesh sensitivity study was
conducted to ensure the accuracy of the results reported below.

III. Results and Discussion

Figure 4 presents the results of the energy release rate as the
ratio G/G, versus ﬁr\/ﬁ/ JE o, for 8 = 30° and for two inner-
to-outer radius ratios, R,/R, = 2/3 and R,/R, = 4/5. The results
show that bridging reduces the energy release rate to a small
fraction of the value for the unbridged crack for all values of
Br\/ﬁ/ ~JE.0, which are larger than about (.5. These same
results, along with an additional set of results for 8 = 10°,
are plotted in Fig. 5 as the ratio G/Gack. This plot reveals the
approach of G to Gacx as B/H/</E.0, increases. As a reason-
able approximation, one can estimate G using G,cx when
condition (3) is met, and in essentially all cases G, pro-
vides an_upper estimate to G. (The ratio G/G.q is zero at
Bﬁ/ E.o, = Obecause G = G, at B = 0, while Gae is
unbounded as 3 approaches 0.)

To summarize, we consider the simultaneous implications
of condition (3), guaranteeing the approximation G = G,¢y,
together with the requirement

Gacx < (1 — oI, (7
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Fig. 4. Ratio of the energy release rate for a bridged crack to that
of an unbridged crack plotted against the nondimensional stitching
fiber parameter B/H/ \/E.0,.
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Fig. 5. Normalized energy release rate of the bridged crack versus
the nondimensional stitching fiber parameter B\/ﬁ/\ /E o,.

ensuring that transverse matrix cracking does not occur. Here,
I, is the effective toughness of the matrix material through
which the transverse crack propagates. Condition (3) can be
expressed as a requirement on the area fraction of stitching
fibers as

! B (R)(ay
- 4E1E2(H)(T) (8a)

Similarly, condition (7) can be expressed as

& Elo R, _

1 - ¢ 6E,Er(1 — ¢l
E} [R)\[oy 200H %h
a2\ H)\ 7 ) V3E( - o)L, (85)
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Fig. 6. Combinations of I', and 7 that satisfy conditions (8a) and
(8h) given oy = 50 MPa, ¢, = 0.05, £, = E, = E = 200 GPa and
R, = 7 pm. To satisfy (8«), T must be to the right of the dashed line for
a given H, and to satisfy (8b) the combination must lie above the solid-
line curve,

As an illustration, consider the following representative values:
E. = E, = E =200GPa, R, = 7 pm and o, = 50 MPa, and
assume the area fraction of the fiber stitches is ¢, = 0.05. Con-
dition (8a), ensuring G =~ G, is satisfied for all levels of 7 to
the right of the vertical dashed line in Fig. 6, corresponding to a
particular value of specimen thickness H. Condition (84),
which excludes the possibility of matrix cracking, is indepen-
dent of A and is met for all combinations of T and I, above the
solid line curve in Fig. 6. This example emphasizes that careful
consideration may have to be given to the level of fiber stitching
and the fiber—matrix interface properties if transverse matrix
cracking is to be avoided. If one is willing to tolerate matrix
cracking as long as there is not a major loss of bending stiffness,
then one needs only to satisty (8a). Finally, it has tacitly been
assumed that the length of the sliding zone on either side of the
matrix crack surface does not reach the inner or outer surfaces
of the specimen (i.e., the sliding length is less than H/2). This
possibility can be checked, but it would be likely only for thin
specimens with low levels of .
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