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Abstract

Simulations of the inelastic strains caused by matrix cracking in unidirectional CMCs are performed. They are
based on a cell model, which has previously been analyzed by a shear lag approximation. Here, finite element
solutions are used to arrive at more accurate formulae, differing from the shear lag results mainly in the range of
small debonds. The model relates the inelastic strain to the constitutive properties, particularly the interface sliding
and debonding resistances. Comparisons with experimental results indicate good correspondence for a SiC/SiC
composite but divergences for a SiC/CAS composite. The divergences are attributed to the contribution of inelastic

strain from fiber failure,

1. Introduction

In composites with either a ceramic (CMCs) or
intermetallic (IMCs) matrix, cracks can form in
the matrix while the fibers remain essentially
intact (Aveston et al., 1971, Kim and Pagano,
1991; Marshall and Evans, 1985; Beyerle et al,,
1992; Evans, 1991). This capability is imparted to
the material by using a fiber coating that allows
debonding and frictional sliding as the cracks
interact with the fibers (Evans et al., 1991). Fur-
thermore, in metal (MMCs) and polymer (PMCs)
matrix materials, similar matrix cracks form upon
cyclic loading. The matrix cracks may develop
upon either tensile or shear loading (Brgnsted et
al., 1993). Both beneficial and detrimental effects
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arise when matrix cracks form. The beneficial
effect occurs because the cracks introduce inelas-
tic strains (Aveston et al., 1971; Nardonne and
Prewo, 1988; Beyerle et al., 1992; Evans et al.,
1993). Such strains provide stress redistribution
mechanisms, which impart notch insensitivity
when the composite constituents are optimized
(Evans et al., 1993; Cady et al., 1993). For opti-
mization purposes, it is important to understand
the factors that govern the formation of matrix
cracks, as well as their effect on the inelastic, or
‘plastic’, strains. The detrimental consequence
concerns the stress concentrations induced in the
fibers by matrix cracks, especially at ply interfaces
and in the vicinity of manufacturing flaws
(Budiansky and Cui, 1994). These stress concen-
trations, when they exist, may weaken the com-
posite.

Most composites with practical utility include
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fibers having at least two orientations. The sim-
plest such configuration is a 0°/90° laminated
material such as that shown in Fig. 1. Analyses
concerned with such materials are basic. Upon
tensile loading, cracks in the 90° layers are first
formed by a three dimensional tunneling process,
spreading from initial flaws (Xia et al., 1993). At
higher stresses, the cracks in the 90° plies begin
to spread into neighboring ° plies as plane strain
matrix cracks, bridged by fibers. The associated
uniaxial stress/ strain behavior is depicted sche-
matically in Fig. 2 (Beyerle et al., 1992; Evans et
al., 1993). The behavior addressed in the present
article concerns the tensile stress—strain behavior
of 0° plies, following earlier work on the same
problem (Pryce and Smith, 1992; Weitsman and
Zhu, 1993; Evans et al., 1993; Vagaggini and
Evans, 1993). The largest contributions to the
inelastic strains arise due to matrix cracking and
fiber debonding and sliding in the 0° plies.
Knowledge of the behavior of these plies is an
essential part of gaining an understanding of the
performance of a laminated composite.

The inelastic strains caused by matrix cracks
are most directly assessed on unidirectional mate-
rials. For such materials, the stress/ strain behav-
ior is sketched in Fig. 3. At stresses above g,
matrix cracks develop. The average spacing d
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Fig. 1. A cross-ply composite with tunnel cracks, which have
first formed in the 90° plies, spreading as plane strain cracks
into the 0° plies.
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Fig. 2. Schematic tensile stress—strain curve of a cross-ply
composite.

between the matrix cracks diminishes as the stress
increases. At g, the cracks saturate, with a spac-
ing d,. The slope of the stress/strain curve usu-
ally increases as the stress approaches and ex-
ceeds g,. A methodology, described in references
cited above, has been developed for predicting
the uniaxial stress—strain behavior in terms of the
constitutive properties of the fiber / matrix system
such as fiber volume fraction, interface debond
encrgy, frictional sliding stress, and residual
stresses. For the most part, solutions available for
carrying out this methodology are obtained from
approximate shear lag analyses. The primary pur-
pose of this paper will be to present a fairly
comprehensive set of more accurate results which
will allow assessment of the shear lag predictions
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Fig. 3. Tensile stress—strain behavior of a uni-directional fiber

reinforced composite stresses parallel to the fibers, and evolu-
tion of matrix crack density.
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and, more importantly, to enable workers in the
field to carry out accurate implementation of the
general methodology.

2. Preliminaries and results from shear lag anal-
ysis

The focus will be on the stress—strain behavior
of a unidirectional fiber reinforced composite un-
der uniaxial stressing parallel to the fibers such
that the overall strain is monotonically increasing.
Fig. 3 depicts the stress—strain behavior of such a
composite. As already remarked, matrix cracks
begin forming when the overall stress o reaches
the matrix cracking stress &, with debonding
and sliding occurring along the fiber/ matrix in-
terfaces. Let E be the modulus of the uncracked
composite. There are several contributions to the
overall strain € in addition to the strain e¢xpected
for the uncracked composite, ¢/E. Even without
debonding and sliding, the matrix cracks increase
the compliance of the composite. Debonding and
sliding further increase the compliance and
thereby add to the overall strain. The modulus of
the cracked and debonded composite at a fixed
average spacing of matrix cracks d and at a fixed
debond length / (see Fig. 4) will be denoted as E,
such that in the absence of interface friction and
of any residual stress

§=G/E,. (1)

Friction along the fiber / matrix interface reduces
the overall strain relative to (1). Conversely, a
residual tensile stress in the matrix is relieved by
matrix cracking and gives rise to additional over-
all straining relative to (1).

In this paper, attention is restricted to systems
with a residual compressive stress acting across
the fiber / matrix interface such that the debond-
ing process involves mode II cracking and such
that the debonded interfaces remain closed. A
constant friction stress 7 is assumed to act within
the debond region as depicted in Fig. 4. The
misfit strain giving rise to residual stress in the
uncracked composite is denoted by (2. Following
the scheme in Hutchinson and Jensen (1990,
hereafter designated by HI), £2 is identified with
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Fig. 4. Conventions for axisymmetric cell model.

the axial strain mismatch between the fiber and
the matrix such that a positive {2 corresponds to
residual tension in the matrix. A difference in
radial and axial strain mismatches between the
fiber and matrix is taken into account; Af2 de-
notes the radial strain mismatch. The results for
the quantities of interest will be calculated using
the axisymmetric cell displayed in Fig. 4. Details
of the specification of this cell will be given in the
next section, as will the method for calculating
the quantities which follow. In the remainder of
this section, we present the form of the mechan-
ics solution for this cell model, introducing the
essential nondimensional coefficients. We also
present the approximate results from shear lag
analysis for these coefficients. In the next section,
the more accurate results for the coefficients
based on full numerical calculations will be given
along with some further motivation for the partic-
ular form of the mechanics solutions, as well as
assessments of the shear lag approximations.

2.1. Form of the mechanics solution

At fixed average matrix crack spacing d and at
fixed debond length /, the overall strain depends
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linearly on &, 7 and (2. Specifically, for the cell
model of Fig. 4 the solution for the overall strain
can be written as

NE, fa,R rl?

"E(1—a,f)d ’ERd’ (2)

7
§=—+D
E

where the incremental modulus of the cracked
and debonded composite is written as

Ei:é(HD(‘iR). (3)

v

In these equations R is the radius of the fiber,
f=(R/B)? is the volume fraction of fibers where
B is the outer radius of the cell, and E,, is the
matrix modulus. The coefficients a;, (and b; and
¢; introduced in subsequent equations) are coeffi-
cients introduced in HJ. Recipes for these coeffi-
cients are given in HJ for arbitrary fiber and
matrix moduli, including the most general cases
where the fiber has transversely isotropic moduli,
the matrix is isotropic, and the ratio of the radial
to axial mismatch strains is A. Except when indi-
cated to the contrary, the appropriate coefficients
for the present work are those in HJI associated
with type II boundary conditions (see the discus-
sion in the next section). The coefficients D; in
(2) and (3), and in (4) given further, are nondi-
mensional functions of f, /[/R, d/R and nondi-
mensional moduli parameters, such as E;/E,_, v;
and »_. These are the coefficients for which
extensive numerical results will be presented in
the next section. We note in advance that their
dependence on d /R is relatively weak over most
of the parameter range of interest and for many
purposes this dependence can be neglected. For
fixed d and / the mode II stress intensity factor
K, is also a linear function of &, 7 and {2. The
form of the solution for K, for the cylindrical
cell of Fig. 4 1s

0E_ fa,JR Tl

Ky - DyovR +D, 22 p T
(I-af) “*VR

(4)
The fact that D, appears in the contributions in

(2) from both & and {2, and D, in the corre-
sponding contributions in (4), is a rigorous fea-

ture of the solution which is shown in the next
section.

The energy release rate G of the mode II
debond crack is related to Ky; by

G=Kj/E, (5)

where E is a modulus quantity dependent on the
moduli of the fiber and the matrix. When the
fiber and matrix are each isotropic,

.2 )
1-vf 1-v;

+
E; E

: (6)

1

1 29
—==5(1-8
7 (187 -
where B is the second plane strain Dundurs
parameter. For most systems the numerical influ-
ence of B2 in (6) is quite small and can be
neglected.

2.2. Shear lag results for D,

Shear lag modeling of fiber debonding and
frictional sliding for systems where the fiber/
matrix interface remains closed, have been car-
ried out by a number of authors (Gao et al., 1988;
Marshall, 1992; HIJ). Here the results of HJ will
be used and these can be expressed in the form
given in (2) and (4). (Indeed, it was the form of
the shear lag results which, in part, guided the
choice of these forms.) The expressions for D,
listed in (7a)-(7d) are obtained by identification
from the HJ expressions. Specifically,

D, = 8fE£m %cf, (7a)
D,=V\E/E, ¢, (7b)
D,= 2E—:nb2, (7¢)
D,=\(by+b5)(E/E,). (7d)

The relevant recipes for the coefficients above
are those for the type II boundary conditions in
HI, which are appropriate to the present study
because they model a cell in an array as discussed
in the following. It should be remarked that the
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above result for D, is not from a shear lag
calculation. Instead, it is the exact result for the
cylindrical model of Fig. 4 for the case d/R =
in the steady-state limit when //R becomes suffi-
ciently large. Nevertheless, for brevity, the above
set of formulas will be referred to collectively as
the shear lag approximation.

3. Numerical results for D,
3.1. The cell model

The scheme behind the model envisages a
hexagonal array of fibers in a matrix with uni-
formly spaced matrix cracks aligned normal to
the fiber direction. As iS now common practice,
for computational reasons, a cylindrical cell is
used to approximate the hexagonal cell (cf. Fig. 5
and Fig. 4). The cell is subject to an overall stress,
&, parallel to the fiber axis, and the height of the
cell is taken to be equal to the crack spacing, d.
The cell has a matrix crack at its mid-plane. The
lateral faces are required to remain a circular

-——

Fig. 5. Motivation for axisymmetric cell model.
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Fig. 6. Solution schematics for establishing the connection
between solutions for two loadings.

cylinder with zero shear traction and zero aver-
age normal traction. The faces of the cell perpen-
dicular to the stressing direction are constrained
to remain planar with zero shear traction and
with average normal traction equal to o. As
already introduced, the volume fraction of the
fiber is f=(R/B)* where B is the cell radius; /
is the length of the debond zone. Residual com-
pressive stress is assumed to act across the fiber
matrix interface keeping the debonded interface
closed.

The appearance of D, in the two contribu-
tions in (2) and D, in the two terms in (4) is a
rigorous consequence of the close connection of
the effects of applied stress and residual stress on
the overall strain and the stress intensity factor
due to cracking and debonding. The connections
are now established with the aid of the solution
schematics in Fig. 6. Prior to any cracking or
debonding, the two contributions to the axial
stress in the fiber and the matrix are given by
results from the appropriate Lame problem in
HI:

O'f = all?
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and

off = —a,E, 0, (8a)
Tn=(1~a,f)a/(1-f)

and

om =fay Eq2/(1=f). (8b)

The additional overall strain due to cracking and
debonding (with zero friction) in the presence of
o is given by problem C in Fig. 6; denote it by
Ae=(o,/E )h, where h is a dimensionless
function of the geometric and moduli variables.
By (2) and (3), # and D, are connected by

_ (l_f)EITIR

Now consider the additional overall strain due to
release of the residual stress. From problem C’ in
Fig. 6, this is Ae =(oX/E )h, where h is the
same as in problem C. The expression in (2) for
the contribution due to {2 immediately follows
using (11b) and (12). The argument for the dual
roles of D, in (4) is similar.

3.2. Numerical results and more accurate formulas
for D,

Plots of D, as a function of //R are shown in
Fig. 7a for three levels of fiber volume fraction
and three values of E;/E,_; d/R =16 has been
chosen for this cell. The results in this plot, and
others to follow for the cell model, have been
computed with v; = v, = 0.3. The value of D, for
1 =0, DY, reflects the compliance increase due to
matrix cracks without debonding. Plots of D{
computed, again with d /R = 16, are given in Fig.
7b. When used in (3), the results for D{ in Fig. 7b
provide an estimate of compliance which is valid
for sufficiently dilute crack spacings, typically d
greater than about one fiber diameter. Estimates
of DY which account for crack interaction could
be presented but are generally not needed for the
present purposes since the crack spacing only
drops to values as small as several fiber diameters
when appreciable debonding occurs as well. Un-
der these circumstances the predominant contri-
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Fig. 7. Numerical results from cell model: (a) for D,; (b) for
values of D, in absence of any debonding of D?.

bution arises from the fiber/matrix sliding, as
can be seen in Fig. 7a. The linear dependence of
D, on [ evident in Fig. 7a persists until the
debond is within about one radius of the cell end.
As the debond reaches the end of the cell (ie.
! =d/2) the value of D, then drops to the HJ
result (7a). An approximation which captures the
various features mentioned above is

+8f— —c2. (10)

Numerical results for D, for the same sets of
parameters are shown as a function of //R in
Fig. 8. The results from (7b) from the steady-state
limit are included. The slow, slight increase of the
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numerical results above the steady-state limit as
l/R increases above about 3 or 4 is due to the
interaction between [ and d, i.e. and influence of
d/R. But this influence is quite small until the
debond approaches the end of the cell. The re-
sults presented here were computed for a cell
with d/R = 16. The steady-state estimate of D,
is also in error as //R becomes less than about
1/2, but that too can probably be overlooked in
most applications of the present results since the
details of the emerging debond precipitated by
the matrix crack are likely to be fairly compli-
cated and three dimensional in nature. In conclu-
sion, the steady-state estimate (7b) of D, should
be sufficiently accurate for use in (4).

The reduction in the overall strain caused by
the friction between the fiber and the matrix is
given by the third term in (2). Numerical results
for D, are plotted in Figs. 9a and 9b. Since the
dependence of D5 on I/R is very strong as [/R
becomes small, the abscissa in Fig. 9a is taken to
be the inverse normalized debond length. As //R
becomes large, the numerical results for D, do
approach the shear-lag prediction (7c), but clearly
there are significant discrepancies at smaller {/R.
An approximation for D, is developed in the
Appendix. It has the features that it approaches
the shear-lag result (7¢) as //R becomes large
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an.

and approaches an approximation to the asymp-
totic solution when [/R is small; it is

D, - (2\/3')fc15ﬁ2
? 3V | JEe VI

1/2

E 2
2E—b2] : (11)

m

+

Comparisons of the prediction from (11) with
some of the numerical results for f=0.3 are
shown in Fig. 9b where it is seen that the approxi-
mate formula (11) gives a reasonably accurate
interpolation over the entire range of //R.
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The frictional reduction in the mode II stress
intensity factor depends on D,, as plotted in Figs.
10a and 10b. This coefficient has a very strong
dependence on //R but almost no dependence
on f. The approach to the shear lag result as //R
increases is very slow. The strong dependence on
[/R is again addressed by an interpolation ap-
proximation obtained in the Appendix, which ap-
proaches the shear lag result (7d) for large //R
and approaches an approximation to the asymp-
totic solution for the limit of small //R. This
interpolation formula is

2

(12)

A comparison between (12) and the more accu-
rate numerical results in Fig. 10b shows that (12)
provides an adequate approximation to D, over
the entire range of //R, although not quite as
accurate as the approximation for D;.

4. Prediction of tensile stress—strain behavior

4.1. Behavior prior to matrix crack saturation

Debonding is controlled by the mode II
debonding toughness /. The matrix crack spac-
ing d(a) is a function of the applied stress. This
functional dependence is assumed to be known
from experimental observation or from other the-
oretical modeling (Curtin, 1993; Spearing and
Zok, 1993); no attempt is made to predict d(&)
here. The relationship between the debond length
[/ and the applied stress & is obtained from (4) by

imposing the debond condition K|, = \/Eil“, . Let
&, be the debond initiation stress, defined as the
overall stress at which the debond can begin to
spread up the fiber from the matrix crack surface.
This stress can be larger or smaller than the
matrix cracking stress, depending on the proper-
ties of the composite. If it is larger, debonding is
postponed beyond the onset of matrix cracking
until the overall stress reaches &;; if it is smaller,
the debond jumps to a finite length as soon as a
matrix crack forms. From (4) and (7b), the debond
initiation stress is

1/D2)VEF1/R —fa,E Q/(1 —fa))
1/Cl)\/EmFi/R —(cy/)EL L2 (13)

o

i

op—0g-

il

Since D, is given by (7b) for the more accurate
results as well as for the shear lag model, this
result holds for both levels of approximation. Eq.
(7b) has been used to arrive at the second expres-
sion, along with the identity ¢,/c, = fa,/(1 — fa,)
from HJ. The third line in (13) is used to define
the two contributions to &;, one due to the mode
II debond toughness and the other due to the
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residual stress in the uncracked composite. For
applied stresses greater than &, (4) gives

[ D, (E_Ei)
R_D() 1 (14)

One of the main differences between predic-
tions from the more accurate cell model and the
shear lag model is the debond length when it is
not large. By (14) with (7d) and (12), the ratio of
the predicted debond lengths at a given value of
applied stress depends on //R from the more
accurate model according to

/

shear lag model

accurate model

o L/4

RN

),

(15)

Plots of this ratio are presented in Fig. 11. It can
be seen that there is little dependence on the
moduli choices, but the shear lag model signifi-
cantly overestimates the extent of debonding for
debonds less than about one fiber diameter.

The relation (14) giving [//R, together with
d(7), can now be used in conjunction with (2) to
predict € as a function of o. The /-dependence of

D, and D, in (2) and of D, in (14) must be taken
into account. The most straight-forward proce-
dure to generate stress—strain curves with these
relations is to use / as a free parameter which is
increased monotonically (until it reaches d/2),
using (14) to obtain ¢ and then (2) to obtain e.
Specific examples will be given in Section 5 where
they will be compared with closed form represen-
tations for the stress—strain behavior valid for a
shear lag approximation given in Section 4.3.

4.2. Consistency condition for the cell height d, at
matrix crack saturation

With reference to Fig. 3, let &, be the overall
stress at which the matrix cracking saturates at
spacing d,. In modeling the response of the com-
posite by a representative cell of height d, we do
not attempt to capture the statistics of the matrix
cracking process wherein new cracks form at ran-
domly located flaw sites in portions of the com-
posite which have not yet experienced fiber
debonding and sliding. Here we will assume that
the matrix cracks are uniformly spaced with the
spacing d identified as the cell height. For this
model, d decreases and [ increases as o is in-
creased. Additional matrix cracks cannot be nu-
cleated once complete fiber debonding has oc-
curred. Conversely, further matrix cracks will nu-
cleate under increasing stress if the fibers have
not fully debonded. It follows, then, that within
the framework of this model, & must attain &, as
the fibers become fully debonded (i.c., as /[ ap-
proaches d /2). By (14), this requirement provides
the consistency relation between d, and o, as
d, 2D, (o,—0)

R D,(d/2) (16)

Well-known statistical arguments (e.g. Curtin,
1993) suggest that the mean matrix crack spacing
at saturation should fall between d, as predicted
by (16) and d,/2. A limitation of any model
based on a single representative cell is that it
cannot realistically reproduce the effects of varia-
tions in the matrix crack spacing. Here, (16) will
be used to specify the limit when matrix crack
saturation occurs, denoting also the point where
the fibers have fully debonded.
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4.3. Specialization to the shear lag approximation

The above prescriptions simplify for the shear
lag approximations of D, in Section 2.2. Now, D,
is independent of [ in (14). In evaluating € using
(2) for o <a,, D, is independent of / and D,
varies linearly with /. By eliminating / in (2) using
(14), one can readily obtain an equation of the
form
- o 1 —_ —\2 — —
e—E+dwﬂAMroJ+&@ 7)|.

(17)

where the coefficients A, and A4, involve the HJ
coefficients and parameters such as 7 and I.

A further simplification is achieved if one as-
sumes that v, = v, = v and if one uses the formu-
las in HJ for type 1 boundary conditions rather
than type II conditions. Type 1 conditions are
appropriate for a cell with completely uncon-
strained lateral sides; these are the conditions
assumed by most authors in carrying out shear lag
analyses. Some discussion is given in the Ap-
pendix concerning the error involved in making
this replacement , which is generally small for the
present purposes. Under these conditions, (14)
and (17) reduce exactly to, respectively,

| _(1-f) E, (7-7)

— , 18
R™"2f E (182)
T 1 [(1—f)’EXR
=—+
“TE T dG) | 2f2EE 14
x[(7-5)" +25,(5-5)), (18b)
0;=0p — Oy,
_ 4f2EET;
X A-fE.R’
O'R—E—m(fm, (1 C)
where y is a factor close to unity given by
1+v)E. +(1—-v)E
X (I+v)E+ (1 -v) (18d)

Vv [E+(A-2)E]

The consistency condition (16) becomes

d, (1-f) E, (%-7)
R f E r

(19)

4.4. Stress—strain behavior subsequent to matrix
crack saturation

Formula (2) for the strain continues to hold
when saturation has been attained in the range
o >ao, with [ fixed at the value d,/2. In this
state, the fibers are fully debonded and are all
carrying the axial load. There is a minor variation
of the axial stress along the fibers due to the
frictional ‘clamping’ of the matrix segments. In
the fully debonded state, type I boundary condi-
tions of HJ become applicable because there are
no longer segments of undebonded material to
impose the transverse constraint associated with
type 11 conditions. The shear lag approximation
to E_, given by (3) and (7a), is essentially exact in
this state, assuming that the matrix is still in
contact with the fiber. Thus, for stress levels
above 0, overall stress and strain increments are
related by Ae = AG/E_. Type I conditions with
v; = v, give the following expression for the mod-
ulus E, of the composite with saturated matrix
cracks,

11 (1-f)E,
E.FE ( fE:x*?
If x is taken to be unity (it is nearly always within
a few percent of unity), the above reduces to the
result E_ = fE;, which would be expected were it
not for the interaction of the fiber and the cracked
matrix through Poisson contraction effects when
the fiber remains in contact with the matrix.

Assuming fiber/ matrix contact is maintained
with the friction stress 7 still operating, the com-

posite strain in the fully debonded state is given
by

(20)

=5 & "IER (21)

The second term is the residual strain in the
fiber, which is largely released in the saturated
state. The third term is the strain resulting from
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Fig. 12. Effective Poisson’s ratio governing transverse strain
under axial load for a composite which has undergone matrix
cracking with spacing d but no debonding. The effect of
initial residual stress is not included.

the friction ‘clamping’ stress on cach segment
between matrix cracks. The latter has been deter-
mined using a simple shear lag calculation which
neglects any Poisson interaction between the fiber
and the matrix (which is accounted for in the
third term in (2) as it stands). This result also
applies when fibers have broken, assuming this
occurs beyond matrix crack saturation. Then f
should be identified with the effective volume
fraction of fibers, or portions of fibers, carrying
their full share of the applied stress. Finally, if
the fibers and the matrix have lost contact and
the friction stress is lost, then (21) holds with
E.=fE; and the third term omitted.

4.5. Transverse strain

The cell model can also be used to predict the
overall transverse strain € of the composite in
the various regimes of matrix cracking. There is a
substantial literature on elastic properties of un-
cracked composites, and no attempt will be made
here to summarize results in that regime. A lim-
ited set of results obtained by the finite element
analysis of the cell of Fig. 4 is displayed in Fig.
12, showing the effect of matrix crack spacing on
the effective Poisson’s ratio in the absence of any
debonding (I = 0) or residual stress. In this figure,

v, = —é€r/€ and the values of the Poisson’s ra-
tios used in the calculation are v; = v, = 0.3.

With minor extension, the results of HJ can be
used to give general formulas for the transverse
strain in the regime in which matrix crack satura-
tion has been achieved and the fibers are fully
debonded. Neglecting the very small effect due to
frictional clamping on the transverse strain, one
can extend the HJ analysis to compute the change
in radius AB of the outer boundary of the cell.
This is computed with B as the value in the
unloaded, uncracked state, subject to residual
stresses associated with the mismatch (2. With &
defined as A B /B, this analysis gives

Er= —vu€ + Cpl, (22a)
where

2f [bl(l —fa;) +f‘13]
Vg = , 22b
(L= f) [bo(1 - fay) + fas] (220)
Co= Veffb2+(—1-——%—)(—2b1+vm) a,. (22¢)

The coefficients in these equations are those of
HIJ for type 1 conditions. For v;=v =v,

B 2v fE;
YT W w+ fF(— 0)]E +(1— )1+ »)(1-20)E,,
(23a)
and, in addition, if E;=FE_, then
vf
T T (1) (1L v7)]
and
Co=ver(1 = f)(1 +Av), (23b)

where A is the ratio of the radial to axial mis-
match strains defined in HJ.

The above results only apply in the range in
which € exceeds €, the strain at which the matrix
cracks saturate, and is less than &, the strain at
which the fibers lose contact with the matrix. The
HJ model (type I conditions apply) gives for the
axial strain at which the radial compression across
the fiber / matrix interface drops to zero:

€ =[A/vi+ (ay—2va,) E,/E; ] Q2
=[r/v+ (1 -fEL/E]Q, (24)




224 M.Y. He et al. / Mechanics of Materials 18 (1994) 213-229

Table 1

Constituent properties for composite systems
SiC/CAS SiC/SiC

E; (GPa) 200 200

E  (GPa) 100 300

R (pm) 7 7

v 0.25 0.25

f 0.4 0.4

7 (MPa) 20 150

I dm=?) 0.1 6

oR (MPa) 80 100

G (MPa) 125 350

@, (MPa) 275 700

d./R 11 2

where the second expression applies when v; =
v, = v. This estimate of the strain at which con-
tact is lost across the fiber / matrix interface takes
no account of any possible increase in effective
radial mismatch due to sliding in combination
with fiber surface roughness. An example show-
ing the variation of the transverse¢ strain as a
function of the axial strain will be given at the
end of the next section.

5. Stress—strain curves

To illustrate application of the results pre-
sented above we will present theoretical stress—
strain curves for two unidirectional composites
(Beyerle et al., 1992; Evans et al., 1993; Guillau-
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Fig. 13. Theoretical stress—strain curves for the SiC/CAS
composite and comparison with experimental data.
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Fig. 14. Theoretical stress—strain curves for the SiC/SiC
composite and comparison with experimental data.

mat, 1993), one with relatively low frictional slid-
ing stress and interface debonding toughness
(SiC/CAS) and the other with relatively large
values of these properties (SiC/SiC). In each
case, the fiber is nicalon SiC. The constituent
properties and summarized in Table 1. In each
case 0, and o, have been experimentally deter-
mined as, respectively, the stress at which matrix
cracks first begin to spread and the stress at
which matrix cracks saturate. The experimental
data on the matrix crack density development
indicate that the density varies approximately lin-
early with applied stress in the range, &, <& <
a,, according to Evans et al. (1993)

. [i'ig_"‘] . (25)
d dS lr& - UmC

In carrying out the calculations of the tensile
stress—strain curves, we will use the saturation
matrix crack spacing, d,, from the consistency
condition (16) rather than the experimentally ob-
served average crack spacing at saturation, for
reasons discussed in Section 4.2. The results for
d,, obtained from (16) for both the more accurate
model and the shear lag model, are:

SiC/CAS:
(ds/R)accurate model 16.9
and

(ds/R)shcar fag = 171’
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SiC/SiC:

(dy/R) sccurate model = 3-0

and

(ds/R)shear 1ag = 4-3. (26)

These arec larger than the experimentally ob-
served average values (Table 1). There is little
difference between the two theoretical values of
d,. The experimental values for the average ma-
trix crack spacing at saturation fall in the range
between d, and d /2, consistent with statistical
arguments (Curtin, 1993).

Tensile stress—strain curves calculated for the
two levels of approximation are shown in Fig. 13
for the SiC/CAS material and in Fig. 14 for the
SiC/SiC material. These results were generated
under the assumption that contact is maintained
between the fibers and the matrix over the whole
range of stress shown. It is noteworthy that, in
spite of the significant differences between the
two approximations in some of the coefficients
and in the difference in the predicted debond
lengths, there is very little difference in the pre-
dicted stress—strain curves from the two approxi-
mations. (It should be borne in mind that the
value of d, in the calculations depended on the
approximations; the value in (26) appropriate for
the particular approximation was used.) More-
over, while the results in these figures were com-
puted using the appropriate coefficients from HJ
for the type 11 cell boundary conditions, the pre-
dictions obtained from the simpler shear lag for-
mulas in (18) through (21) are essentially indistin-
guishable from the more elaborate shear lag re-
sults. It follows, then, that the simpler formulas
for the shear lag model can be used to predict the
overall tensile stress—strain curve with essentially
the same accuracy as the more accurate model, as
long as d is derived from (19), and provided that
it is understood that the predicted debond length
will exceed the more accurate prediction when
the debond length is small.

Comparison between the simulation and the
experimental results require some discussion. For
the SiC/SiC composite, there appears to be a
good correspondence. However, the composite
fails before matrix crack saturation occurs. This is
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Fig. 15. Inferred inelastic strain contribution due to fiber
failure for the SiC/CAS composite and comparison with the
inelastic strain contribution expected from fiber failure given
a monomodal distribution of fiber flaws from Hild et al.
(1993). Here, m is the modulus associated with the Wibull
statistics of the flaw distribution.

a consequence of the large matrix cracking stress
caused by the large 7 and I, as well as some
fiber degradation during composite processing.
For the SiC/CAS composite, there is substantial
discrepancy at large strains. In this composite,
the tangent modulus after matrix crack saturation
is much smaller than (21) would predict (Spearing
and Zok, 1993). Such a discrepancy does not arise
in other composites that attain saturation prior to
composite failure (Guillaumat, 1993). One impli-
cation is that the discrepancy is a consequence of
fiber failure. Should this hypothesis be correct,
the experimental results can be used to infer the
contribution to the inelastic strain from fiber
failure. The difference, A€, between the experi-
mentally measured strain and the theoretical
strain from Fig. 13 is plotted in Fig. 15. The
shape of this curve is atypical of the inelastic
strains caused by fiber failure, exemplified by
simulations for a monomodal flaw distribution in
the fibers (Hild et al., 1993) given by the dashed
curves in Fig. 15. For fiber fialure to be responsi-
ble for the present discrepancy, it would be nec-
essary that the fiber have a bimodal flaw distribu-
tion. Should this be the case, the implications for
the ultimate tensile strength (UTS) need to be
addressed. Preliminary analysis (Curtin, work in
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progress) has indicated that the measured UTS is
consistent with a bimodal distribution that indeed
gives a fiber contribution to the strain compatible
with Fig. 15.

There is an additional discrepancy between
simulation and experiment regarding the incre-
mental elastic modulus, E_, measured from initial
unloading data for SiC/CAS (Evans et al., 1993),
as shown in Fig. 16. Under the assumption that
the initial unloading response involves no re-
versed slipping. E_ should be given by (3) with
{ =0, where D, is plotted in Fig. 7b. Specifically,
for the SiC/CAS composite, the value of D,
from Fig. 7b is = 1, whereas a value = 4 gives a
much better fit to the experimental data. Such
discrepancies are commonly found in CMCs. The
phenomenon is attributed to fiber straightening
effects that occur as the matrix crack density
increases.

Finally, it is instructive to address the trans-
verse strain €p with reference to experimental
data for unidirectional SiC/CAS (Harris et al.,
1992) shown in Fig. 17. The model results of
Section 4.5 for €y may be cursorily compared
with these data by assuming that the Poisson’s
ratios of the fibers and the matrix are the same,
as given by the experimentally determined value
for the composite, v = 0.24; the specific values of
v; and v, are not known. The model results
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Fig. 16. Experimentally measured initial unloading modulus as
a function of matrix crack spacing for the SiC/CAS uni-direc-
tional composite. Also shown are theoretical predictions from
Eq. (3) for two values of D;: the values D, =1 predicted by
the cell model and the value D; = 4 which gives a better fit to
the data.
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Fig. 17. Experimental data for transverse strain for SiC/CAS
from Harris et al. (1992) and comparison with trends pre-
dicted by the mode! (Egs. (22) and (24)).

displayed in Fig. 17 show: (i) the initial segment
governed by the composite modulus v; (ii) the
segment with slope v, from (23a) governing be-
havior in the regime of fully saturated matrix
cracking, together with the offset C,, £2 from
(22c); (iii) a segment (arbitrarily taken to be
straight) connecting (i) and (ii) between €. and
€,; and (iv) the value estimated for €, from (24),
beyond which contact between fiber and matrix is
lost. The model results agree quite well with the
data for axial strains € less than about 0.5%, even
with the simplifying assumption about the Pois-
son’s ratios. The discrepancy with the data at
larger axial strains coincides with a similar dis-
crepancy found above for the axial inelastic strain,
attributed to an influence of fiber failure. Analy-
sis of the effects of fiber failure on €y has yet to
be performed.

6. Concluding remarks

The inelastic strain caused by matrix cracking
in unidirectional CMCs has been analyzed using
an accurate cell model. The formulae provided
allow the straightforward prediction of these
strains from the constituent properties, such as
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Vagaggini, E., .M. Domergue and A.G. Evans (1993), Rela-
tionships between the macroscopic performance of ce-
ramic matrix composites and constituent properties, 1:
Theory and methodology, J. Am. Ceram. Soc., in press.

Weitsman, Y. and H. Zhu (1993), Multi-fracture of ceramic
composites, J. Mech. Phys. Solids 41, 351-388.

Xia, Z.C., R.R. Carr and J.W. Hutchinson (1993), Transverse
cracking in fiber-reinforced brittle matrix cross-ply lami-
nates, Acta Metall. Mater 41, 2365-2376.

Appendix A
A.1. Approximation to D;

The shear lag approximation to D, given by
(7¢) becomes increasingly accurate at large /. An
approximation is first developed for small /, and
then the two limits are combined as (11) to inter-
polate over the entire range of /. To obtain an
approximation for small /, use is made of the
following consequence of the reciprocal theorem
for two independent loadings, 7 and X, on the
cell of Fig. 4

~2wR [7V(z) dz=wB*(d/2) 3%, (A1)
0

Here, € is the overall strain due to 7, while V(z)
is the distribution of the relative tangential dis-
placement of the crack faces due to an average
normal traction ¥ acting on the ends of the cell.
The numerical results indicate that (7b) gives a
reasonably accurate representation of K, for the
end load problem at short debond lengths, ie.
K, =c,3(RE/E.)"/?. The relative tangential
displacements of the faces of an interface crack
near its tip are given by the plane strain relation
W(z) = 8Ky /E)/(I—z) /2w, neglecting any ef-
fect of the second Dundurs parameter. Using

Table 1A
Values of (A4,), /(A}y
Ei/E, v =02 v =03
0.5 0.99 0.98
1 1 1
2 1.03 1.01
3 1.06 1.21
10 1.19 1.77

these approximations in (A1) and noting the defi-
nition of D, in (2), gives

L, 2 [2 fE [R -
CEVE VT (42)

The form given by (11) was found to give the
most accurate interpolation formula among sev-
eral considered.

A.2. Approximation to D,

The approximation for K, due to 7 for small /
simply makes use of the solution to the problem
of a crack of length 2/ along an interface between
two semi-infinite plane strain blocks loaded by
the shear traction 7. If, again, the second Dun-
durs parameter is taken to be zero, then K, =
—rvwl. This approximation is combined with the
shear lag result (7d) as the interpolation formula
(12).

A.3. Simplification of the shear lag results using
type I boundary conditions

Certain predictions of the shear lag model of
HI are fairly sensitive to the type of boundary
conditions for the cell, I or II. Discussion of some
of the issues surrounding the influence of bound-
ary conditions is given by Marshall (1992). Here
we show that the important coefficient A4, in (17)
is not strongly dependent on the choice of bound-
ary condition for many composites of interest.
This same coefficient also appears in the widely
used traction—displacement law for bridging fibers
whose interface with the matrix has zero debond
toughness and a frictional sliding stress 7
(Marshall et al., 1985). In the present notation,
this bridging law is 6 = A, %, where § is the total
opening displacement due to fiber sliding. From
(18b) it is seen that type I conditions, with v, = v,
give

_(1-f)’EZR

A TS 20~ D
! 2f2E%E;Tx?

(A3)

where y is defined in (18d). (In passing, we note
that the factor y is not normally included in the
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the interface sliding and debonding resistances.
In some cases, the results do not fully account for
the measured inelastic deformation. There are
additional contributions from the fibers. For fibers
having a monomodal flaw distribution, the addi-
tional inelastic strains caused by stochastic fiber
failure are well known. These can be simply added
to the matrix cracking strain. However, it remains
to establish fiber failure contributions when more
complex distributions exist. Such effects are be-
lieved to be responsible for the discrepancy be-
tween the measured stress—strain curve for
SiC/CAS and the curve simulated using only the
matrix cracking contribution. The strain caused
by the fibers may also have a contribution from
the straightening of initially curved fibers, as the
matrix crack density increases upon loading. This
effect is a possible cause of the smaller elastic
unloading modulus measured on SiC/CAS than
that predicted by the cell model.

The next important step is to extend the mod-
cling to cross ply laminates, based on cracks
extending into the 0° plies from tunnel cracks
that have previously formed in the 90° plies (Fig.
1). Such analyses are in progress.
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bridging law. It is associated with a Poisson’s
ratio interaction between the fiber and matrix
which is not taken into account in the simpler
shear lag analyses which have been used to arrive
at the bridging law coefficient.) Table Al pre-
sents the ratio of A, for type I boundary condi-

tions from (A3) to that for type II conditions
computed using results from HJ for various com-
binations of fiber to matrix moduli and two values
of Poisson’s ratio. Except for large fiber to matrix
moduli mismatches, the difference between the
predictions for these two conditions is small.






