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This study examines the phenomenon of microcrack toughening under the premise that toughening must entail mutual
shielding of the main crack and the microcracks. Maximum toughening corresponds to the macrocrack/microcrack
configuration that minimizes the maximum energy release rate (or stress intensity factor) among the various crack tips.
Explicit results for the maximum toughening achievable and the corresponding optimal configuration are presented for a
plane strain model of a macrocrack in the presence of either one or two microcracks.

1. Introduction

Some brittle single phase polycrystalline
materials display a macroscopic fracture energy
which is many times the fracture energy for clea-
vage of the single crystals or the fracture energy of
grain boundary separation. Thus, even in the ab-
sence of any plastic deformation, the polycrystal
can be much tougher than its constituent crystals
or its grain boundaries. A number of toughening
mechanisms have been suggested to account for
this rather counterintuitive phenomenon. Each
mechanism proposed is connected one way or
another to heterogeneity on the scale of the grains.
They include crack deflection, microcrack shield-
ing, and crack bridging by uncracked grains.
Quantitative toughening predictions for these
mechanisms are not yet firmly established and a
consensus on conditions when one mechanism is
expected to dominate has not been reached.

This paper focuses on microcracking and ad-
dresses the question of the maximum toughening
which can be expected from this mechanism. Con-
siderable theoretical work has recently been de-
voted to the phenomenon of microcrack shielding
in brittle materials. Some studies approach the
problem on a continuum scale (Evans and Faber,
1980; Hoagland and Embury, 1980; Hutchinson,
1987; Ortiz, 1988) where a profusion of micro-
cracks are imagined to participate in the process
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of shielding the main crack. Other studies (Rose,
1986; Rubinstein, 1986; Hori and Nemat-Nasser,
1987; Kachanov, 1987; Montagut and Kachanov,
1988; Gong and Horii, 1989) treat the microcracks
as discrete entities interacting with the main crack
tip. There are two potential contributions to
toughening from microcracking. One is crack tip
stress redistribution due to the release of residual
stress when a microcrack is nucleated. This contri-
bution is rather similar to plastic deformation at a
crack tip in a metal or to dilatational transforma-
tion at the tip of a crack in a ceramic. The residual
stress 1s present and varies from grain to grain
when the crystals have thermal-expansion ani-
sotropy. The other contribution results in stress
redistribution at the main tip due to microcrack-
ing in the absence of residual stress. In the con-
tinuum approach this redistribution results due to
the lowering of the stiffness of the microcracked
material. In the discrete approach the redistribu-
tion occurs directly from the interaction of the
microcracks with the main crack. It is this latter
contribution which is of concern in this paper.
The contribution due to release of residual stress
is reasonably well in hand (Hutchinson, 1987) and
does not present any major computational diffi-
culties.

Specifically, in this paper, the interaction be-
tween one or two microcracks located near the tip
of a macrocrack is considered. Optimal configura-
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tions are found which minimize the maximum
energy release rates for all the crack tips involved.
Although the outcome of a highly idealized model,
these results supply insight into the maximum
amount of toughening which can be expected from
this contribution of microcracking. Prior work has
primarily focussed on shielding of the main crack
with no regard for any attendant amplification of
the energy release rates of the microcracks. A
toughening enhancement requires the mutual
shielding of the main tip and the tips of the
microcracks, otherwise crack advance will occur
from one of the microcracks. This is the motiva-
tion for the search for the configuration with the
lowest possible maximum energy release rate of all
the crack tips involved.

This study is highly idealized in that attention
is limited to plane strain cracks in an isotropic
elastic solid. Microcracks in a brittle polycrystal
usually nucleate on a grain boundary facet and
arrest at a junction, or they may form on a crystal
cleavage plane and arrest at the first grain
boundary they encounter. In either case, the het-
erogeneity at the scale of the grains sets the size
and orientation of the microcracks, and nucleation
is usually assisted by residual stresses. Neverthe-
less, the results of this study do isolate an essential
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Fig. 1. Zone of reduced stiffness surrounding the tip of a
semi-infinite crack: (a) annular reduced stiffness zone, and (b)
reduced stiffness zone extends all the way to crack tip.

aspect of the interaction between a macrocrack
and microcracks as it pertains to toughening,

A rationale for limiting attention to the one or
two microcracks nearest the main crack tip can be
found from both continuum and discrete interac-
tion theories. Calculations using large arrays of
discrete microcracks interacting with the macro-
crack (Montagut and Kachanov, 1988) suggest
that the locations of the nearest microcracks
largely determine whether shielding or antishield-
ing occurs. The details of the distribution of the
microcracks outside the immediate tip region ap-
pear to be less important. The same conclusion
can be drawn from continuum studies of the effect
of zones of less stiff material surrounding a mac-
rocrack tip (Hutchinson, 1987). Consider the
semi-infinite crack in Fig. 1a which is surrounded
by an annular circular zone with a reduced shear
modulus g and an altered Poisson’s ratio ». The
crack is subject to a remote mode I loading char-
acterized by K7, and the stress intensity factor at
the tip within the annular zone (with modulus p
and ») is K{'. To lowest order in the differences in
moduli, & — g, and Poisson’s ratio, ¥ — »,

K{=K} (1.1)

In other words, the annular zone of less stiff
material surrounding the tip has neither a shield-
ing nor an antishielding effect to lowest order. If
the less stiff zone extends all the way to the tip
such that the tip lies in the less stiff material, as
shown in Fig. 1b, the crack tip stress intensity
factor is altered according to

- salf -l
(1.2)

to lowest order in the moduli and Poisson’s ratio
differences (Hutchinson, 1987). Thus, it is the
mner core of less stiff material, as opposed to the
surrounding annular region, which mainly in-
fluences the stress level at the crack tip. Note also
that the size of the circular zone does not enter
into (1.2). Increasing the zone size does not alter
the shielding,
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2. Formulation of the problem

Consider the configuration in Fig. 2a where a
single microcrack of length 24 is positioned near
the tip of the main crack. The tip of the main
crack is subject to a mode I stress intensity factor
K} in the absence of the microcrack. When the
size and distance of the microcrack from the tip is
very small compared to the length of the macro-
crack, one can consider an asymptotic problem
where the semi-infinite main crack is remotely
stressed consistent with the classical mode I crack
tip field

KO
Uij=‘/_2—qi"r_5ij(0) (2.1)
where (r, #) are plane polar coordinates. The mi-
crocrack is arbitrarily positioned as characterized
by the two angles, o and w, and the distance, d,
of its center from the main tip. Let

2
g, = Kloz(l—E”) (2.2)

a)

&

\C
NE

b) / -
B /
/ v
Fig. 2. Macrocrack /microcrack configurations: (a) one micro-
crack and (b) two symmetric microcracks.

A

be the energy release rate of the main tip in the
absence of the microcrack, where E is Young’s
modulus and » is Poisson’s ratio. It will be re-
ferred to as the applied energy release rate. De-
note the energy release rates of the three tips in
the interaction problem in Fig. 2a by 9,, ¥ and
.. By dimensional considerations and the fact
that a linear, plane strain problem is being
analyzed, one concludes that

@,/9,=f(d/a, a, w) (2.3)

with a functional dependence on the same varia-
bles for %5/%, and ¥Y./%,. Similarly the mode 1
or mode II stress intensity factor of any of the
three tips must depend on the same three nondi-
mensional position variables according to

K/K{=g(d/a, a, w) (2.4)

Thus, a small microcrack close to the tip has the
same effect as a large microcrack farther from the
tip with the same d/a ratio. More to the point for
application to polycrystals, the influence of a mi-
crocrack of fixed size (e.g. the size of a grain facet)
is larger the closer it is to the macrocrack tip. This
observation is clearly related to the special role of
the microcracks nearest the tip noted in the Intro-
duction.

The two-microcrack configuration in Fig. 2b
will also be considered. In this case the cracks will
be restricted to be symmetrically positioned with
respect to the semi-infinite main crack. Thus, by
symmetry, only results for tips A, B and C need to
be considered.

The solution to the interaction problem is ob-
tained by numerical solution to an exact integral
equation formulation similar to that used by Hori
and Nemat-Nasser (1987), Kachanov (1987), and
Gong and Horii (1989). This formulation and the
reduction for numerical analysis is given in the
Appendix. The solution procedure leads to highly
accurate results for the stress intensity factors and
energy release rates. High accuracy is needed for
the present minimization problem. Various ap-
proximate solutions, or solution procedures, have
been proposed for the interaction problem. These
approximations all tended to lose accuracy when
d/a<1 and the microcrack is located off the
plane of the main crack as in Fig. 2a. In particu-
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lar, they have large errors for the optimal crack
configurations reported in the next section.

Two minimax problems are considered in this
paper:

Problem No. 1

Minimize the maximum of (¥%,/9%,, %s/%,
%./9,) with respect to all admissible d/a, a and
w. Admissible values of the position variables are
those for which the cracks do not intersect.
Problem No. 2

Minimize the maximum of (Kj' /K}, K&/K?,
KE/K{) with respect to all admissible d/a, a and
.

Solutions to the minimax problems are carried
out using the Least Pth algorithm (Bandler and
Charalambous, 1972) coupled with a Simplex
search method (Press et al., 1986). In the terminol-
ogy of optimization, the objective function to be
minimized is either the maximum energy release
rate or the maximum mode I stress intensity factor
among all the crack tips.

3. Solutions, optimal solutions and inferences

As an illustrative example, consider the special
subset of configurations for the two-microcrack
problem wherein the microcracks are parallel to
the main crack (a=0) and d/a is fixed at the
value 1.2. The dependence of the energy release

3.
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Fig. 3. Variation of cnergy'?él?a-s; rates with w for d/a=1.2
and a=0.

Table 1
Optimal solutions for one- and two-microcrack configurations
(objective function minimized)

Optimal One microcrack Two microcracks
solution G K, G K,

@ 145.8 149.9 147.9 150.4

a 27.0 251 274 243
d/a 1.02 1.01 1.02 1.02
9, 0.468 0.429 0.289 0.246
Gy 0.001 0.001 0.001 0.000
9, 0.468 0.502 0.289 0312
Ki 0.683 0.652 0.538 0.496
) 43 0.031 0.025 0.023 0.020
K¢ 0.623 0.653 0.475 0.495
K 0.042 —0.056 0.000 0.000
*Ki 0.017 0.007 —0.003 0.008
K§ 0.283 0.276 0.252 0.259

* Bottom crack.

rates of the tips on w is shown in Fig. 3. When the
microcrack is ahead of the macrocrack (w < 60°)
the energy release rate of the macrocrack tip is
amplified above the applied value. Within this
subset of configurations, the maximum shielding
of the main tip A occurs when w=130° with
%, =0.325. However, in this configuration the en-
ergy release rate of tips C of the microcracks is
larger than that of the main crack. Maximum
mutual shielding (i.e. the minimum maximum en-
ergy release rate) in this subset of configurations
occurs when w = 140° with ¢, = %.

The results of the solutions to the two minimax
problems over the full range of admissible d/a, a
and w are presented in Table 1. The optimal
configurations are shown in Fig. 4. Note that the
differences between the optimal solutions and
configurations are very small. Moreover, the opti-
mal position parameters characterizing the one-
microcrack problem are almost the same as for the
two-microcrack problem. For Problem No. 1 where
the objective function is based on the energy re-
lease rate the optimal solution gives

9,/% = %:./% =0.468 (one microcrack)
(3.1)

Y,/% =9./9% =0.289 (two microcracks)
(3.2)
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/
based on K

b)
Fig. 4. Optimal one- and two-microcrack configurations.

The objective function space is relatively flat in
the neighborhood of the minimum solution. This
holds true for each of the two objective functions
and for the one- or two-microcrack problems.
Thus there is a range of configurations about
those listed in Table 1 for which the values of ¥,
and 9. are essentially the optimal values. For the
same reason, the values of position variables for
the optimal configurations are less accurate than
the optimal values of the objective function, i.e. ¥
or K.

The optimal results are not entirely unexpected.
Consider, for example, the configuration in the
insert in Fig. 5 where a single microcrack is paral-
lel to the main crack and the two lead tips, 4 and
C, are equally extended. The variation of the
energy release rates of the three tips with ¢/a is
shown. As can be understood from elementary
considerations, the applied energy release rate be-
comes equally partitioned between each of the
lead tips when ¢/a <« 1 and

4,/%>%/%—>1/2 asc/a—0 (3.3)
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Fig. 5. Variation of energy release rates with ¢/a for a single
microcrack parallel to main crack with aligned leading tips.

This arrangement is not far from optimal for the
one microcrack case.

The two-microcrack case is not so easily under-
stood. The analogous arrangement of two parallel
microcracks has a variation of energy release rates

1.0

0.8

8/9q

0.2

0.0

c/a

Fig. 6. Variation of energy release rates with c¢/a for two
microcracks parallel to main crack with aligned leading tips.
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shown in Fig. 6. In this case, the applied energy
release rate is not equally partitioned as ¢/a — 0.
Instead the main tip is shielded such that

9,/%=01 and ¥./9%,=045 asc/a—0
(3.4)

This configuration is quite far from optimal.

The optimal values of the mutually shielded
tips in (3.1) and (3.2) suggest that the largest
amount of microcrack toughening (excluding the
contribution from the release of residual stress)
that can be expected is 2 or 3 times the “intrinsic”
toughness measured in surface energy units. That
is, if crack advance of each of the tips is controlled
by a critical value of energy release rate, gy,
then there exist one- or two-microcrack configura-
tions for which the critical applied energy release
rate, %,, 1s 2 or 3 times %pyr- Whether optimal,
or near optimal, configurations can actually con-
trol the overall toughness in a statistical sense
along a crack front is an open issue.

The above conclusion is not only tempered by
the fact that the calculation is a two dimensional
one. As discussed in the Introduction, it is also
premised on the assumption that shielding is
dominated by the microcracks closest to the tip.
In addition, the assumption of an “intrinsic”
toughness, %p;r, is obviously a simplification.
Local conditions such as geometry, elastic ani-
sotropy mismatches, and residual stresses at a
grain boundary junction or grain boundary where
a tip has arrested will influence the critical energy
release rate for that tip at that location. The
manner in which all these influences work to
establish the polycrystalline toughness is ex-
tremely complex and difficult to model. The pre-
sent results, though highly idealized, provide a
reference for the effect of microcracking on tough-
ness, excluding the contributions from the release
of residual stress.
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Appendix
Macrocrack / microcrack interaction solution

The solution methodology is illustrated for the
case of a none-microcrack system involving a
semi-infinite crack and a microcrack of length 2a
within an infinite body subject to remote loading
as shown in Fig. A.1. Following the procedures in
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Hori and Nemat-Nasser, 1987; Kachanov, 1987,
Gong and Horii, 1989) the total problem in Fig.
A.1 is decomposed into three subproblems where
each subproblem contains only one crack. Based
on linear superposition principles, the stress inten-
sity factors at the various crack tips in the total
problem are found by summing the stress intensity
factor contributions of the corresponding crack
tips in the three subproblems. The
macrocrack /microcrack interaction solution
method involves constructing the integral equa-
tions governing pseudo-tractions 73'(p) and 7(n)
on the faces of the two cracks in subproblems 2
and 3. Here p is the lineal coordinate along the

semi-infinite crack wake with p = 0 at the tip, and
1 is the lineal coordinate along the microcrack
face, where n =0 is midpoint of the microcrack.
In subproblem 1 the semi-infinte crack is sub-
ject to the same remote loadings as that found in
the total problem. The resultant traction along the
line segment BC has a component along the di-
rection of BC denoted as ¢;*(n) and a component
perpendicular to BC denoted as 0,*(7n). The loca-
tion of the line segment BC corresponds to the
location of the microcrack in the total problem.
In subproblem 2 the stress field within the
infinite body is due to a traction distribution
along the semi-infinite crack faces with a shear

Total Problem

Subproblem 1

Subproblem 2

Subproblem 3

Fig. A.1. Decomposition of macrocrack /microcrack interaction problem into three subproblems.




90 D.K.M. Shum, J.W. Hutchinson / On toughening by microcracks

component 7'(p) and a normal component 7;(p).
The traction distribution 7;'(p) is needed to main-
tain traction-free boundary condition along the
semi-infinite crack faces in the total problem, the
magnitudes of its components to be determined as
part of the solution to the total problem. The
resultant traction along the line segment BC has
components oBB ().

Similarly, in subproblem 3 the stress field within
the infinite body is due to a traction distribution
along the microcrack faces with a shear compo-
nent 7(n) and a normal component 7,°(7). The
resultant traction along the semi-infinite line seg-
ment has components o;'(p) and oj'(p) along
directions that are parallel and perpendicular to
the line segment.

Solution of the total problem is found by re-
quiring the unknown tractions 74'(p) and 7°(n) in
the subproblems to result in traction-free crack
faces in the total problem such that

UBA(P) + TBA(p) =0
o (n) + ¥ (n) = —o (n)

for0g<p<ow
for —a<n<a

(A1)

From this point on our procedure departs some-
what from those in (Hori and Nemat-Nasser, 1987;
Kachanov, 1987; Gong and Horii, 1989).

Subproblem 1

Let the applied K field for the total problem
be expressed in complex form such that

K=K?+iK} (A2)

where i=y—1 and K[} has been included. The
stresses og*(m) then take the form

of =Re[Z +iY]

o =Re[ Y] (A3)
where
Y= —(Im(z) +yz')e™ ()=L
e (A.4)
Z =
V2mz

Here, K denotes the complex conjugate of K and
z is the complex variable denoting the position of
the point on BC.

Subproblem 2

The resultant stresses of (n) due to the
pseudo-traction 7'(p) are defined as

% (n) =~ [ Ki(n: p)7(p) dp (A.5)

where Kj.(n; p) is the B component of the re-
solved stresses on the line segment BC at location
7 due to a pair of unit line loads applied on the
semi-infinite crack faces at location p. Here the
repeated indice « is to be summed from 1 to 2.
Explicit expressions for K é‘a can be derived from
results in (Tada et al, 1985). For numerical
evaluation of the integrals in (A.5) let

)= (1-w' AL L(0) G =15
(A.6)

where U,_(u)is Chebyshev polynomial of the sec-
ond kind of degree j — 1 and u is the nondimen-
sional distance variable defined such that —1 <u
< 1. For admissible microcrack configurations
where the microcrack and the semi-infinite crack
do not overlap, (A.5) can be integrated exactly in
closed form giving

N
% (1) = L AjeFpa(m) (A7)

Subproblem 3

The resultant stresses o4'(p) due to the
pseudo-traction 7.2(n) are similarly defined as

o'(p) = —f_aaKéya(p; )7, () dn (A.8)

Explicit expressions for Kz, can also be derived
from results in (Tada et al., 1985). For numerical
evaluation of the integrals in (A.8) let

N
(W)= ¥ Bl 1(w) withw=2 (A9)
j=1
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Again, for admissible microcrack configurations
(A.8) can be integrated exactly in closed form

giving

UﬂA(p) = ; BjaGBa(p) (A.10)

Stress intensity factors

Substitution of (A.3, A6, A7, A9 and A.10)
into (A.1) results in a system of equations which
are linear in the 4 N-unknowns, 4,, and B,,, and
which have an explicit, closed form dependence
on p and 7. Each of the four equations (A.6, A.9)

are collocated at N points denoted as ¢, where

kmn
N+

UN(tk)=0’ tk=COS( ), k=1,...,N

(A.11)

The stress intensity factors at the semi-infinite
crack tip are found by combining the stress inten-
sity factor contributions from subproblems 1 and
2 such that (Tada et al., 1985)

2a > 1
A_ g0 _ 4
K=K\ = fo = (u) du
where K f are the magnitudes of the applied mode

I and II stress intensity factors. The integrals in
(A.12) can be integrated exactly in closed form

giving

N
K=K +2/2ma Y, (—1) 4,
Jj=1

(A.12)

(A.13)

The stress intensity factors at the microcrack
tip C due to 7%(n) take the form (Tada et al,
1985)

a (1 1+w
Ke= =7 [ 15 ) an

which can be integrated exactly in closed form
giving

(A.14)

N
K= —Vna ) B, (A.15)
Jj=1

Similarly, the stress intensity factors at the micro-
crack tip B take the form

a (1 (1-w
K=\ [ Vet an

which can also be integrated exactly in closed
form giving

(A.16)

KE=yma % (-1)’B, (A.17)

Since the integrals (A.5, A.8, A.12, A.14 and
A.16) that arise in this macrocrack/microcrack
interaction formulation are integrated exactly, the
accuracy of the crack interaction solution ob-
tained using this method is limited only by the
number of terms taken in the pseudo-traction
series and the choice of collocation points.







