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ABSTRACT

THE EFFeCT of void nucleation and growth on overall stress—strain behavior is investigated for solids
undergoing plastic straining under axisymmetric and shearing conditions. Contact between the void surface
and the nucleating particle is taken into account and is found to be important under shear and under
axisymmetric straining when the stress triaxiality is low. The notion of the macroscopic stress drop due to
nucleation of a void is defined and computed, both for isolated voids and for voids in periodic arrays. The
stress drop for an isolated void in an infinite matrix can be used to predict softening due to void nucleation
when the void concentration is dilute. Interaction between voids in shear during nucleation is analysed
numerically and softening effects are calculated along with large strain aspects of void deformation during
subsequent growth.

1. INTRODUCTION

TuE eFFECT of nucleation and growth of voids on the overall tensile stress—strain
behavior of an elastic—plastic solid is depicted in Fig. 1. If voids nucleate by debonding
or cracking of particles starting at a strain Ey, the overall stress—strain behavior then
begins to display softening relative to a comparison material whose particles do not
debond or crack. Each particle sheds part or all of its load when it nucleates a void
and this results in a drop in the overall stress at a given overall strain. Once a void is
nucleated its further growth makes an additional contribution to softening. Softening
due to void growth is proportional to the void volume fraction p and therefore only
becomes significant somewhat after the onset of nucleation.
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FiG. 1. Effect of void nucleation and subsequent growth on macroscopic tensile stress-strain behavior.

To fix these notions more firmly and to set the background for the work contained
within, let Z2(E;) denote the overall effective stress at strain £; under axisymmetric
straining for a matrix material containing rigid spherical particles which do not
debond. In the next section, we define and compute the deviator stress drop AL’
associated with the nucleation of a void by debonding of an isolated spherical particle
of unit volume in an infinite elastic—perfectly plastic matrix. The result has the form

AT, = 3F(X)Z;, (1.1)

where L is the remote stress and ' 1s its deviator. The stress drop is a strong function
of the stress triaxiality X = Z,,/Z, where

T, =1% and X, = (3%, Z/2)% (1.2)

Suppose under proportional axisymmetric stressing that at strain £; voids have been
nucleated at some of the particles corresponding to a void volume fraction p. If the
distribution of the voids can be regarded as dilute, the overall effective stress can be
estimated using the stress drop (1.1) as

I (E3) = [1 = 3pF(X)]Z)(ES). (1.3)
The tangent modulus of the overall effective stress—strain at fixed triaxiality is

dz i dp
= ¢ = EO 1—'Z - ZFEO . M
dE, Jl=35pF]—3 T (1.4)

E e 17
‘ dE,

where E? = dX?/dE, is the tangent modulus of the material with all particles bonded
at E;. During any increment of strain, E,, p increases due to nucleation of new voids,
pn» and growth of previously nucleated voids, pg, so that
d d d

p _dpn  Upg 1.5)

dE, ~ dE, T dE,

where results such as those of RicE and TRACEY (1969) give the triaxiality dependence
of void growth in the form
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dpg
dE, ~ pf(X) (1.6)
for dilute distribution of voids. Thus the erosion of the incremental stiffness of the

material has a contribution
— 3FX)(dpy/dEs) (1.7)
due to nucleation and a contribution
— 3pFfE] (1.8)

due to growth of existing voids. At the onset of nucleation the reduction in stiffness
is due entirely to nucleation since p = 0.

The above features have all been included in the Gurson model of dilatant plasticity
(GursoN, 1977; NEeDLEMAN and Rick, 1978). One of the objectives of the present
paper is to provide results which permit an assessment of phenomenological theories
such as the Gurson model. The present study is carried out within the framework of
continuum plasticity theory on the assumption that the particles and the voids
nucleated from them are large in size compared to dislocation cell size. The continuum
theory of plasticity cannot be used to predict hardening due to precipitates whose size
and spacing is comparable to the distance between dislocations. Similarly it cannot
predict softening due to nucleation or growth of voids which are too small.

In Section 2 the basic problem is considered for nucleation and initial growth of a
void from an isolated rigid spherical particle. The functions F(X) and f(X) in (1.1)
and (1.6) are calculated for axisymmetric remote stress states. Results for these
functions which account for contact between void surface and particle are contrasted
with those which ignore particle contact. Interaction between the void surface and its
nucleating particle are expected to be particularly important under shear since an
unrestrained void closes up as it deforms in a shear field. Softening due to void
nucleation and growth in shear are analysed in Sections 3 and 4. A two-dimensional
plane strain model of a periodic array of interacting void-nucleating particles in
an elastic—perfectly plastic matrix is analysed in Section 3. The evolution of three-
dimensional voids in a linear viscous material in simple shear is considered in Section
4. The emphasis throughout the paper is on the effect of nucleation and subsequent
growth on overall stress—strain behavior.

2. NUCLEATION AND INITIAL GROWTH OF A VOID FROM AN
ISoLATED RIGID SPHERICAL PARTICLE

2.1. Formulation of problem

The matrix material is assumed to be elastic—perfectly plastic with tensile yield stress
o and a Mises yield condition o, = ¢, where o, = (30],0/,/2)"/? is the effective stress
and ¢; is the stress deviator. The material is taken to be elastically isotropic with
Young’s modulus E, and for computational convenience it is assumed to be elastically
incompressible. For plastic loading (6, = ¢4 and 6, = 0) the plastic strain rate is

ey =Pol;, p=0 Q.1
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and otherwise vanishes. Prior to nucleation, the rigid spherical particle is bonded to
an infinite matrix of this material. The remote stress and strain rate are denoted by X
and E and these are taken to be axisymmetric (see Fig. 2) such that

2u5=S Z,=X,=T7T with S>T. 2.2)
For remote yielding, S-T = ¢, and
Eyy=—3E) = —JE,, > 0. (2.3)
The measure of remote triaxiality defined in the introduction is
X=X,Z =(S+27)/(30y). (2.4)

Suppose the remote stresses are applied proportionally until remote yield occurs
with further straining until the limit stress distribution in the matrix 6°(x) is attained.
The traction across the particle-matrix interface is 77 = an,. If the triaxiality is
sufficient to ensure that the void surface pulls away from the particle at every point,
nucleation is modeled by incrementally reducing the traction on the particle to zero.
During this nucleation process the remote strain is increased by an amount S Ey. That
is, if the radial velocity of the matrix interface is such that the void pulls away
completely from the particle, nucleation is modeled by a sequence of quasi-static
incremental problems whose boundary conditions are

gy = —JAolm; on A, and E; = ISEj, (2.5)

where A = 0 at the start of nucleation and A = 1 at the finish. The intent of the analysis
of nucleation in this paper is not to represent realistically the debonding process which
is thought to involve interfacial separation by dynamic crack growth in many cases.
Instead, our aim is to predict the consequences of nucleation at the macroscopic
level. An earlier paper (HUTCHINSON and TVERGAARD, 1987) established that the
overall stress and strain behavior was rather insensitive to the details of the nucleation
process itself, as will be discussed further below. NEEDLEMAN (1987) has formulated
a model of particle debonding which more faithfully deals with interfacial separation
between particle and matrix.

Below a certain level of remote triaxiality (typically about X = 0.6 but depending

V=Y%" Ve

FiG. 2. Geometry and conventions for isolated void calculations.
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somewhat on dE,) the radial velocity of the void surface is found to be negative in
the vicinity of the equator of the particle (6 = x/2) when the unconstrained boundary
conditions (2.5) are applied. Contact between void surface and particle is approxi-
mated in the following way. During any incremental step with conditions (2.5) in
effect in which it is found that the radial velocity at the equator is negative, the
boundary conditions (2.5) are supplemented by a constraint on the velocity fields
which ensures that the radial velocity at the equator is zero. The full analysis, which
is similar in some of its details to the earlier analysis of HUTCHINSON and TVERGAARD
(1987), is outlined in the Appendix.

2.2. The stress drop

The quantitics of primary interest which will be reported below are the volume
change of the void and the stress drop. The stress drop is now defined along with the
equation used for computing it. Consider for a moment a rigid particle of unit volume
in a matrix with finite outer radius R, as illustrated in Fig. 2. The outer surface A is
subject to uniform straining with i, = E,x; where Ey, = 0. Otherwise, the nucleation
problem and subsequent initial growth problem are as described above. Let the stress
distribution at any stage of the process be ¢(x) and define the overall, or average,
stress of the composite body in the usual way as

VE;= -[ Oyhex; dA. (2.6)
AR

Let 6°(x) be the limit stress distribution for the same configuration where the rigid
particle is bonded to the matrix and where the same uniform straining, # = E,;x;, is
applied to 4. At any stage in the nucleation process or thereafter during the growth
phase, the stress drop relative to the overall stress for the bonded particle is defined
as

AX, = J (o5 —ow)mex;d A, 2.7
AR
where it is understood that the particle has a unit volume.
To compute the deviator stress drop under axisymmetric conditions it is convenient
to work with a scalar equation which derives from (2.7). With & as the velocity field

with strain rates & (with s, = 0 on portions of 4, where contact occurs), it readily
follows from the principle of virtual work that

AZUEU = J (Uf,)(—o‘ik)nkd,- dA
e

:J; (a?j—aij)é,-jdV+L (6% —a,)nu,dA (2.8)

where the conventions are noted in Fig. 2. The advantage of (2.8) is that the problem
for the infinite matrix (R — o0) can be used to compute AZ,-_,-EU because (67— 0;))&;
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decays like r~® for large r. Since E,, = 0, (2.8) gives no information on AX,,. For the
axisymmetric problem of Fig. 2 there is only one independent component of the
deviator stress drop and it is given by

AE/33 = %(AzijEij)/EBB- (2-9)

Subsequent to nucleation during the initial growth phase the condition (2.5) on 4,
is replaced by ¢;n;, = 0 assuming no contact occurs. If contact at the equator is
indicated by the unconstrained solution the radial velocity at the equator is constrained
to be zero. The calculations described above can legitimately be carried out using a
small strain theory of plasticity since the changes in strain and in void shape and size
during nucleation are small. The same is true for the initial growth stages immediately
after nucleation.

For completeness we also report the deviator stress rise for bonded rigid particles
of unit volume relative to the pure matrix material subject to the same remote straining
E and with uniform stress . The deviator stress rise relative to the uniform matrix
can similarly be computed from

AXIE, = J (00 —Z,)é;dV, (2.10)
where it = 0 on 4, and where the limit problem (R — o0) can be used in the evaluation
of the integral. The deviator stress rise for the bonded rigid particle is independent of
remote triaxiality since the matrix is incompressible. For axisymmetric straining the
computed value is (see Appendix for details)

ATy, = 0.320,. 2.11)

For a dilute distribution of bonded, rigid spherical particles with volume fraction p
this result implies that the overall flow stress for axisymmetric straining is increased
above o, by $pAYS;, ie.

20 = go[1+0.48p]. (2.12)

This is precisely the dilute prediction obtained by Duva (1984) who considered
strengthening of power law solids by rigid spheres and who obtained (2.12) by
extrapolating to the perfectly plastic limit.

Particles large enough such that their interaction with the matrix can be char-
acterized by continuum plasticity are thus rather ineffective strengthening agents. By
contrast, the softening associated with voids nucleated from such particles is appre-
ciably larger, as will be seen.

2.3. Numerical results for nucleation

Two nucleation and initial growth histories are displayed in Fig. 3 for the case
where $Ey = 2¢, with g, = 64/E. The computational procedure for these results and
others in this section are discussed in the Appendix. During the history for which the
remote stress triaxiality is X = 1 the void pulls away from the particle immediately at
the start of nucleation and never again contacts the particle. For X = 1/3 (remote
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F1G. 3. Stress drop history and volume increase for nucleation and initial growth of a void from a rigid
spherical particle of unit volume (X = 1/3 and 1, 6Ey = 2¢,).

uniaxial tension) the void surface remains in contact with the equator of the particle
during nucleation and subsequent growth. In both instances, the stress drop at the
end of nucleation is virtually the same, to within 1%, as the stress drop attained after
additional straining. Moreover, the stress drop at the end of nucleation is essentially
independent of 0 Ey for all $E, greater than about 2¢,, as documented by HUTCHINSON
and TVERGAARD (1987). For 0 Ey, less than 2g, the stress drop is larger than that shown
but rapidly attains the values shown after small further straining on the order of &,,.

The normalized volume increase of the void (V,—V,)/(e,¥,), is shown in Fig. 3,
where V, and V', are the current and initial volumes. Also shown is that part of the
normalized volume change which is due just to nucleation, i.e. that part which is due
to relaxation of the tractions on the particle-void interface in (2.5) independent of
the contribution due to the increase in E; during nucleation. The two parts are easily
separated in the calculation of ¥, and the part due to nucleation is again essentially
independent of E,. The volume change due to nucleation is denoted by AV and is
defined for nucleation from a particle of unit volume.

For axisymmetric stress states with § > T the deviator stress drop relative to the
bonded particle of unit volume can be written as

AT} = 3F(X0)Z, (2.13)

in accord with the notation introduced by HuTCHINSON and TVERGAARD (1987),
where 253 = 20,/3. Selected values of F(X) calculated with dE, = 2¢, are given in
Table 1 and F(X) is plotted in Fig. 4. The velocity constraint at the equator of the
particle operates during nucleation for stress triaxiality less than about X = 0.6.
However, the effect of the constraint is quite small for X > 1/3, as was ascertained by
repeating the calculation with no constraint (see values reported in Table 1). Included
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TaBLE 1. F(X)

X F F® FO
—0.5 1.73 3.36 3.01
-03 1.88 3.04 2,31
—0.1 217 2.92 2.20

0.048 2.48 2.96 2.24

0.167 2.77 3.08 2.35

0.333 3.26 3.37 2.64

0.583 4.13 4.15 341

1.0 6.63 6.63 5.90

1.333 10.3 10.3 9.59

1.833 20.5 20.5 19.8

FY—nucleation from rigid particle accounting
for contact.

F®—nycleation from
accounting for contact.

F® __nucleation from uniform stress state not
accounting for contact.

rigid particle not

in Fig. 4 is the result of a calculation, as carried out earlier by HUTCHINSON and
TVERGAARD (1987), which nucleates the void from a uniform stress state (i.e. ¢° = %
in the above) rather than from the non-uniform stress distribution induced by the
rigid particle. The earlier calculation also ignores contact between void surface and
particle. For stress triaxiality greater than uniaxial tension (X > 1/3) the difference
between the curve of the carlier analysis and the present one is almost entirely
accounted for by the stress rise (2.11) associated with the rigid particle relative to the
uniform matrix. The stress rise makes a contribution of F = 0.73, independent of X.

F{X)

20
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UNIFORM STRESS
STATE WITH NO
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. 4+ 0 N N |
) 1.0 20
X=Zm/Ze

F1G. 4. Triaxiality dependence of the deviatoric stress drop in (2.13).
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Even at low triaxiality, the stress drop due to nucleation of a void is about three times
as large as the stress rise (2.11) due to the bonded particle. At higher triaxiality the
stress rise is very small compared to the stress drop. Below X = 1/3 the effect of
contact between the particle and void surface becomes increasingly important. For
example at X = —1/2(T' = —58), F=1.73 when contact is accounted for and
F = 3.36 when it is not.

The volume increase due to nucleation AV for a particle of unit volume can be
written as

AV = g(X)e, (2.14)

for axisymmetric loading with S > 7. Plots of g(X) are given in Fig. 5 along with the
earlier predictions for nucleation from a uniform state. The volume increase due to
nucleation is controlled by the elasticity of the material. A purely ¢lastic nucleation
with no contact corresponds to AV = (9/4)Xe,. Thus, the volume increase due to
nucleation at X = 1 is only about twice the purely elastic value. The volume change
due to nucleation is therefore generally negligible compared to the volume of the voids
nucleated, i.e. pAV compared to p.

The earlier study of HuTcHINSON and TVERGAARD (1987) emphasized the role of
the extra strain AE produced by nucleation at a prescribed overall stress level. For
nucleation in an isotropic hardening material (J, flow theory) the extra strain is
related to the stress drop by

—A—V~=g(x)

NUCLEATION
FROM A RIGID
|- PARTICLE WITH /
CONTACT v

[&)]

7
//\\ NUCLEATION FROM
UNIFORM STRESS STATE
s WITH NO CONTACT

1 i -] 1 L 1 J 1 1 1 1 J
o] 1.0 2.0
X

F1G. 5. Volume increase due to nucleation of & void from a particle of unit volume.
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AEU = MijklAE;(]+ %A Vé (215)

ijs
where M is the tensor of instantaneous compliances of the matrix remote from the
void. The earlier study revealed that the stress drop was essentially independent of
hardening rate over a wide range of tangent moduli. Thus in this paper we have placed
emphasis on the stress drop and have exploited perfect plasticity to calculate it.

An important aspect of hardening which did emerge in the earlier work was the
strong dependence of the stress drop on whether isotropic hardening or kinematic
hardening was assumed. For kinematic hardening based on a translating Mises yield
surface with o as the initial yield stress, (2.13) 1s replaced by

AT} = iF(X, Y)Zj, (2.16)

where Y = X,/0,. Curves of F vs X are shown in Fig. 6 for three levels of Y for
nucleation from a uniform state taken from the earlier study. It remains to be seen
whether the strong dependence of the stress drop on hardening indicated by the
kinematic hardening theory is borne out by experiments.

2.4. Numerical results for initial growth

Numerical results such as those in Fig. 3 indicate that there is a unique stress drop
associated with an isolated spherical void of given volume which is attained at the
end of the nucleation stage. It is this observation which justifies an equation like (1.3)
for the overall effective stress in terms of the (dilute) void volume fraction. In a similar

Sy

X=Zm/Ze

FiG. 6. Triaxiality dependence of the deviatoric stress drop in (2.16) determined using kinematic hardening
theory from HutcHinsoN and TVERGAARD (1987).
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fashion, the dilatation rate of the void remains constant once it i1s nucleated, at least
until significant shape changes develop. The normalized dilatation rate of the void
following nucleation

v,
Vv E 3

=f(X) (2.17)

1s shown in Fig. 7. The curve for the unconstrained void which neglects contact
between the void surface and particle is the numerical result of RiCE and TRACEY
(1969). For values of X less than about 0.6 the particle props open the void and
increases its dilatation rate. In uniaxial tension (X = 1/3) the effect of the particle
increases the dilatation rate by about 45% above that for the freely deforming void.
At low triaxialities, involving pressure superimposed on uniaxial tension, as in the
experimental investigations of void nucleation and growth of BROWNRIGG ef al.
(1983), both the stress drop due to nucleation and the dilatation rate during subsequent
growth are strongly influenced by the interaction between the particle and the void
surface.

3. NUCLEATION OF VOIDS FROM CYLINDRICAL PARTICLES IN SIMPLE SHEAR
The issues addressed in the previous section are now reconsidered for the case of

shear driven nucleaticn and growth of voids. Contact between particle and void
surface are expected to be important in simple shear because an unfettered void closes

15}
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FiG. 7. Normalized dilatation rate following nucleation as a function of stress triaxiality.
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as it deforms. An analysis along the lines of the previous section for nucleation of a
spherical particle has not been attempted for simple shear since the problem is
inherently three-dimensional and far more computationally intensive than the axisym-
metric problem. In this section the two-dimensional analog problem will be analysed
corresponding to nucleation of a void from a rigid, circular cylindrical particle.

The plane strain geometry analysed is shown in Fig. 8. This geometry is chosen to
model experiments of Cowig, AZRIN and Orson (1987) in which the type of test
specimen sketched in Fig. 8c is subjected to shear loading along the x;-direction
combined with tension or compression in the x,-direction. Final failure in these
specimens occurs by shear localization and void sheet fracture along a plane parallel
to the x,-axis. This is modeled in the analysis by considering a row of cylindrical
inclusions, which interact with one another. Since the solution is periodic, the cells
indicated in Fig. 8 undergo identical behavior. The plane strain assumption of zero
straining in the x;-direction is not quite realistic for the test specimen, but is used here
for convenience. The specimen shape prevents overall straining in the x,-direction,
and this is prescribed as a boundary condition.

The calculations are carried out for an elastic—perfectly plastic solid within the finite
strain framework using a finite ¢lement formulation. The overall stress and void
growth following nucleation are computed with an eye to discovering whether ““sof-
tening” due to void deformation, as opposed to nucleation, occurs in simple shear.
We return to this issue in Section 4 where three-dimensional voids subject to shear
are analysed for isolated voids in linearly viscous materials.

The circular cylindrical particles in Fig. 8 are rigid with radius g and arranged with
initial spacing 2b from center to center in the x,-direction. The initial separation of
the lower edge from the upper edge is 2¢. The layer is loaded by prescribing a uniform
displacement u; = § of the top edge relative to the bottom edge, together with a
uniform normal true stress X, on the two edges. The true shear stress X |, is calculated
as the average of the traction in the 1-direction on the top edge, and the average
straining in the x,-direction is specified to be zero. The measure of overall shear strain
was taken to be
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Fig. 8. Model for nucleation and a growth of 2-D voids in simple shear. (a) Starting geometry.
(b) Subsequent to nucleation. (¢) Test specimen modeled.
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FiG. 9. Effect of early void nucleation, at y = 0, for a/b = 0.25 and £,, = 0.

y = tany = é/2c. 3.1

As in the previous section, tensile yield stress is denoted by o, the yield surface is
specified by the Mises invariant, and £is Young’s modulus. In this section the material
is elastically compressible with Poisson’s ratio v.

In the numerical solution for the periodic array of voids considered here it is only
necessary to analyse the region ABCD shown in Fig. 8a. The finite strain formulation
applied for the perfectly plastic material and the manner in which the periodicity
conditions are incorporated in the numerical solution are described in detail in the
Appendix. The particles are represented as rigid, circular cylindrical bodies, and the
particle rotation due to shearing of the surrounding material is accounted for in the
numerical solution. At nucleation all points of the void surface are assumed to
debond simultaneously, and any subsequent contact between the particle and the void
surface is represented as frictionless sliding (see Appendix). Cases are also analysed
in which the voids are present from the start with no particle.

Various overall shear stress—strain curves are presented in Figs 9 and 10. In these
two figures £,, =0, ¢/b = 3, a/b = 0.25, 6o/E = 0.002 and v = 0.3. Figure 9 displays
a comparison of the overall curve when the particle remains bonded throughout the
deformation with overall behavior when the void is nucleated at zero strain. Also
included in Fig. 9 is the overall behavior for a traction-free void present from the start
of straining which is free to deform with no constraint. The cross-sectional area change

o8- 0_4[-
24z bonded particle ALAA_O ,:j,-—”
0 i
% o.2r =7 _.¢ nucleation
S\ N s t y=0.02
0.4 nucleotion at y=0.02 0 {

t ]
. 0.08
nucleation at y =0 004 Y
nucleation at y =0

T

04

0 O-(I:)4 y O.IOB
(a) (b)

FiG. 10. Early void nucleation, at y = 0, compared with nucleation in the fully plastic range, at y = 0.02,
for a/b = 0.25 and X, = 0. Both cases account for a particle inside the void.
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of the void (4,— 4,) normalized by the initial area 4, is shown on the right in Fig. 9.
The overall shear stress for the case in which the void contacts the particle is virtually
independent of y even up to volume changes of more than 30% and extensive defor-
mation of the void. The initial shear stress drop (relative to the overall shear stress
when the particles are bonded) for the case in which there is no particle inside the
void is larger than that where the particle contacts the void. The ratio of these two
shear stress drops is very close to the corresponding ratio for the axisymmetric case
in Fig. 4 when £, = 0. The overall shear stress when the voids deform freely shows
a gradual, but small, increase with increasing strain y. Strain softening due to void
interaction, which might be expected, does not occur. Even in the case with a particle,
where the void grows due to the contact condition, no reduction of the shear stress
occurs in the range of y-values considered. This issue will be raised again in the next
section.

Figure 11 shows the initial mesh used for the numerical analysis, and two deformed
meshes corresponding to the analysis for £,, = 0 illustrated in Fig. 9. For the case
with no particle, Fig. 11b shows the deformations at y = 0.052, while Fig. 11c shows
the deformations at y = 0.047 in the case where the void surface is in sliding contact
with the particle. Figure 11b and c clearly show that the void volume decays in the
absence of a particle, while a particle inside the void enforces a volume increase, as
also shown in Fig. 9b. Both deformed meshes show that the shear deformations are
highly localized in the plane containing the centers of the voids, and thus the local
shear strain is much higher than the overall shear strain y defined by (3.1). In fact,
most of the shear deformations are localized in a single row of elements and it must
be expected that this band of intense shear deformations would be more narrow if a
finer mesh had been used. :

The effect of nucleating the voids in the fully plastic state at y = 0.02 in the presence
of the particle is shown in Fig. 10. The overall stress following nucleation has been
reduced to essentially the same level as for the case when the void is nucleated at
y=0.

v
"

(a) {b) (c)

F1G. 11. (a) Initial mesh used for a/b = 0.25 and ¢/b = 3. (b) Deformed mesh at y = 0.052, for £,, =0
and no particle. (¢} Deformed mesh at y = 0.047, for Z,, = 0 with a particle inside the void.
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F1G. 12. Variation of the flow stress X, with a/b for nucleated voids with and without particles present
for £,, = 0. Also shown is the effect of the bonded particles on X ,.

A plot of the overall shear stress following nucleation as a function of a/b is given
in Fig. 12, both for the case where contact between the void surface and particle is
taken into account and for the case where the particle is ““dissolved’ at nucleation.
With no particle present the assumption of a slip band on the plane connecting the
void centers gives an upper bound to the limit load, which varies linearly with a/b,
vanishing as a/b — 1. Figure 12 shows that the stresses found numerically are slightly
above the line, which is expected since the mesh cannot accurately resolve the slip
band field leading to the upper bound estimate. The shear stresses are higher when
there is a particle inside the nucleated void, but clearly the values are identical at the
ends, a/b=0and a/b = 1.

The effect of the normal component of stress, X,,, on the overall shear stress and
the void growth is shown in Fig. 13. Here, the stress X,, is applied first and then held
constant as the material is subjected to shear loading. With no particle the stress drop
due to the void is about the same for positive and negative values of ¥,,. However,
for compressive X,, the void closes with increasing y and the tendency for X, to
increase with y is accentuated. For tensile ¥,, the void opens and X,, decays slightly.
Interaction with the particle is exceptionally strong when £,, = —¢,/2. There is very
little stress drop due to nucleation since the void remains in contact with the particle
over much of its surface. By contrast, the void pulls away from the particle over most
of its surface when X,, = 7,/2 and the behavior is much like that for unconstrained

$.,/0=0.5
o4 2 \/ e
Av-Ao //\X/"
Ao 0.2 il

N /0.64 » 508

—— bonded particle -0.2- ™ Zap/0p=05
— — with porticle ‘\‘/
----- no particle N,
0 L 1 _ L ~
o 0.04 oos 04 A
Y
(a) (b)

F16. 13. Effect of a superposed normal stress X,, for a/b = 0.25, with nucleation at y = 0.
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FI1G. 14. Overall shear siress drop due to nucleation as a function of the superposed normal stress X,,, for
a/b = 0.25.

voids, although there is slightly more softening behavior. A plot of the overall shear
stress drop immediately following nucleation is shown in Fig. 14. This figure illustrates
the strong influence of contact between particle and void surface in solids subject to
shearing. Clearly, a significant superposed hydrostatic tension (X,, > 0.5q, in the
present model problem) is required before the effect of contact with the particle can
be neglected. The results of Fig. 14 suggest that the component Z,, should have a
significant influence on the softening contribution due to nucleation in shear. This is
borne out indirectly by the experiments conducted by COWIE et al. (1987).

4. ELrLpsorpAL Voibs UNDER SIMPLE SHEAR IN A LINEARLY VISCOUS MATERIAL

Several aspects of three-dimensional void growth in linearly viscous materials in
simple shear are investigated in this section motivated by a desire to obtain a better
understanding of the influence of voids under large amounts of shear as occurs, for
example, in shear localization and beneath the surface of roller bearings. It is well
known that an isolated traction-free ellipsoidal void subject to remote shearing
remains ellipsoidal as it rotates and deforms and is amenable to an analysis based on
EsHELBY’s (1957) theory for ellipsoidal inhomogeneities. Such studies have been
reported by MCCLINTOCK et al. (1966) for two-dimensional voids in plane strain flows
and by BBy and Korsuszewskr (1977) and Freck and HUTCHINSON (1986) for
initially spherical voids. In this section, the effect of particle contact on the deformation
of the void is approximated in a way which preserves the feature that the voids
evolve through a sequence of ellipsoidal shapes permitting continued use of Eshelby’s
solution. The focus in this section is on: (1) evolution to large shear strain, (2) the
influence of initial void shape and orientation and (3) three-dimensional interpretation
of two-dimensional results.

Calculations will be carried out for a material which is incompressible with the
strain-rate relation

&y = 05/ Q), 4.1

where u is the viscosity. The remote state is simple shear with superimposed hydrostatic
stress X, such that far from the void '
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01 =03 =033=2%,, 0;=2=Xp;,
Uy =yx,, Uy =u; =0,
é12=%?’ Cbuz%)"- (4-2)
The remote shear strain measure y is defined by the above equation and is also
interpreted in the insert in Fig. 15.

The void is imagined to be nucleated from a bonded, rigid ellipsoidal particle of
unit volume at y = 0. The stress drop due to the presence of the void will be calculated
as a function of y, the drop being measured from the bonded particle whose orientation
has evolved to that associated with the same value of y. The overall stress history of
the material with voids can therefore be directly compared with that for the material
with bonded particles, assuming dilute concentrations of particles and voids nucleated
from the particles.

To start, a general result is derived for the stress drop relative to the uniform matrix
for an ellipsoidal inclusion of unit volume embedded in a uniform matrix which is
subject to a prescribed remote strain rate E. HiLL’s (1965) notation and formalism

for the class of Eshelby inclusion problems will be used. At this stage in the analysis
the matrix is taken to be compressible and linearly viscous with

£¢=Me and o= Lg, 4.3)

where standard vector-matrix notation is used for symmetric second-order tensors
and diagonally symmetric fourth-order tensors. The uniform viscous properties of the
bonded ellipsoidal inclusion are characterized by M and L*, and the uniform stress
and strain-rate inside the inclusion are denoted by ¢¢ and &

Following the procedure given in Section 2 and referring to the notation for the
finite region in Fig. 2, let uniform straining w, = Ei_,-xj be prescribed on Ay and define
the stress drop relative to the block of uniform matrix within Ay as

AZ,; = f Ex—ow)nex, dA = j Z;—o,)dV, 4.4
A v

where X = LE and the inclusion is taken to have unit volume. Next, form AZ K,
noting i; = E;x; on A,. Then, by the principle of virtual work

— I

FiG. 15. Geometry for ellipsoidal voids in simple shear.
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AL E, = | (B,=0,)é,dV
iy y / '/ /

:f (z,.,.—a;,)s';,.dmj (5 —0,)é,dV. 4.5)
Vo Ve

Now, noting (X;;—0;)é&; = a,-j(E,-j—é,-j) in V by reciprocity, and then by repeated
applications of the principle of virtual work (recalling ; = E; ,X; on Ag), one obtains

J (Z;—0)é,dV = —'[ oy (Ex;—;)dA4
Ve Ay

Vo

Lastly, letting R — co so that ¢° and & are uniform and taking ¥V as a unit volume,
one obtains from (4.5) and (4.6)

A E,; = L,8,—oiE,
= (Lijubr— Ufj)Eij- 4.7)
It follows then by the linearity of the problem that
AL = L —o". 4.8)
The similar result for an ellipsoidal void subject to uniform tractions o}n; over its
surface (n pointing into the void) is
AL = L —o*. (4.9)
A parallel derivation assuming prescribed uniform tractions, o;n;, = Z,;n;, on A leads

to the result for the extra strain-rate due to the inclusion of unit volume relative to
the uniform block as

AE = MAYX = & — Mo*. (4.10)

These results, which are implicit in the works of Eshelby and Hill, are now spe-
cialized to cases of interest here. Itis convenient to use the special diagonally symmetric
fourth-order tensors, M* and L* = M* !, introduced by HILL (1965) which relate
the uniform strain rate &* experienced by an ellipsoidal void resulting from uniform
tractions on; acting over its surface (n pointing into the void with no stress at infinity),
1.€.

g = —M*s* and o* = —L*¢* 4.11)
For a bonded, rigid ellipsoidal particle, & = 0 and (4.8) reduces to
A = —¢° = —(I+ ML*)X, (4.12)

where I is the identity matrix and the expression for 6¢ is obtained readily from results
in HILL’s (1965) paper. When the particle is spherical and the matrix is isotropic and
incompressible the deviator stress drop obtained from (4.12) is
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AY = —3%, (4.13)

which is opposite-signed from the stress deviator since the rigid particle raises the
average stress.

For an ellipsoid void subject to uniform traction o, on its surface with E in the
matrix at infinity (HrLL, 1965)

& = (I+M*L)E— M*o* (4.14)
and (4.9) becomes
AL = (I+ LM*)(X—a%). (4.15)

For a traction-free, spherical void in an incompressible isotropic matrix the deviator
part of (4.15) reduces to

AY =Y. (4.16)

The total deviatoric stress drop of an unconstrained spherical void relative to a bonded
spherical particle, both of unit volume, obtained as the difference between (4.16) and
4.13)is

AL = 35X, @.17)

When the evolution of the traction-free void indicates that one or more of the
principal axes of the void diminish below the corresponding axes of the nucleating
particle, contact between the void surface and particle will occur. This contact is
modeled in the following approximate way. At any instant the constraint is modeled
by application of a unijform traction ¢, in the direction (or directions) of the principal
axis (or axes) over the full surface of the void and by choosing this traction component
(or components) to enforce the condition that the length of the corresponding axis
(or axes) not diminish below that of the corresponding particle axis (or axes). For
example, if the principal axis b of the unconstrained void in the x, direction (see Fig.
15) is diminished below the corresponding axis of the particle, then a uniform traction
derived from o%, is applied to the void surface with %, chosen so that b = 0.
Enforcement of the particle constraint in this approximate manner permits the Eshelby
solution to be applied exactly to the model since the void continues to evolve through
a sequence of ellipsoidal shapes.

Application of the above procedure to a void which is instantaneously spherical
with unit volume interacting with a rigid spherical particle of unit volume and which
is subject to the remote field (4.2) gives the following. For X, > (10/3)X,, the void
pulls away from the particle in all directions and the shear stress drop relative to the
bonded particle is given by (4.17), i.e. AX,, = (25/6)%,,. For

(5/18)L, < Z,, < (10/3),,, (4.18)

contact occurs with only the constraint associated with 6%, active and the shear stress
drop is found to be

AT, =¥ 3,— %[10Z,,-3%,]. (4.19)

For
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—(5/2)X,, < X, < (5/18)X,,, 4.20)

contact occurs in the 2" and 3’ directions and the shear stress drop is

A212=%212—T§[55212—182m] (421)

While for £,, < —(5/2)Z,, the void surface and particle maintain contact everywhere
and AX,, = 0.

The procedures outlined above can be applied to calculate the evolution of the void
and the associated stress drop, with or without void-particle contact. Numerical work
is necessary when the configuration is not spherical; in particular, M* must be
computed using the basic Eshelby solution for each ellipsoidal shape and orientation
and the evolution of the principal axes of the void and their orientation must be
tracked. Details for the unconstrained void can be found in FL.eck and HUTCHINSON
(1986). Those for the constrained void, and for the bonded rigid particle which serves
as a reference, are similar in most respects and will not be given here.

The evolution of an initially spherical void in the remote simple shearing stress field
(4.2) is shown in Fig. 16. The orientation of the major axis of the void (refer to Fig.
15 for notation) and the shear stress drop are shown for three levels of X,,/X | ,, while
the lengths of the principal axes are only shown for £, = 0. In each figure in this
section, the shear stress drop AX |, is based on a void and particle with initial unit
volume at y = 0. It is not renormalized to a current unit volume at each y. The stress
drop is the total stress drop measured from the bonded rigid particle which coincides
with the predictions (4.17) through (4.21) when y = 0. The behavior of the uncon-
strained void is shown as dashed-line curves and the evolution of the shape and
orientation were reported earlier by FLECK and HuTcHINSON (1986). With X, = 0,
the unconstrained void closes to an elliptical crack (b — 0) when y = 1.76. (In this

25—
~ — Rigid inclusion | —— Constroined .
— Constrained void o= Unconstrained ~=~ Unconstrained
B | -—=Unconstrained void S 20~ — Constroined
41— Zm_ 0 a/a,
45° = 1o -Im 3l 2
b))
\"’T- === 2
~EN NI 2\~ a/o,
o) AN Flz . J e b/De. /0
T s o
¥ 1~ b/be | |
SN 0 ! 2 3
R ; () i’
0 ‘ ’
1
2 y 3

F1G. 16. Evolution with y for a void nucleated as a sphere at y = 0. (a) Orientation of major axis. (b) Major
and minor axes. (c¢) Shear stress drop for void with unit volume at y = 0.
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FiG. 17. Comparison of the shear stress drop for an initially spherical void with that for a nearly 2-D void
(ag:by:cy=1:1:95). In each case the initial volume at y = 0 is unity and £, = 0.

section the calculations were terminated when b/b, dropped below 1/10.) The associ-
ated stress drop AZX,, (which is normalized to unit /nitial volume) is virtually
unchanged as y increases even as the void becomes crack-like.

The main effect of the particle constraint is to prop open the void in the 2’ direction
maintaining the initial length of that axis, b,. The initial shear stress drop is less than
that associated with the unconstrained void, but with increasing remote strain the
shear stress drop slowly increases and for 2,,/2, = 1 eventually becomes larger than
that for the unconstrained void. Thus, the model does give some evidence for a
softening mechanism due to void deformation in shear of the type envisioned by
TEIRLINCK et al. (1987).T However, the effect appears to be relatively small and only
evident after fairly large shearing. For shear strains less than about unity there is
virtually no effect when Z,, = 0, consistent with the findings from the two-dimensional
elastic—plastic calculations reported in the previous section.

The model can be used to obtain some sense of the relationship between quantities
of interest calculated using a two-dimensional plane strain model with a cylindrical
void and those calculated for a three-dimensional void. Figure 17 displays the evol-
ution of the shear stress drop (based again on unit volume at y = 0) under plane strain
shearing (X£,, = 0) for constrained and unconstrained voids which start out as spheres
or as highly prolate ellipsoids with the long axis in the 3-direction (aq:by:co=1:1:95).
Presumably, the behavior of the highly prolate ellipsoids is close to the two-dimen-
sional plane strain limit. The shear stress drop is clearly relatively independent of ¢/a,
at least for shear strains less than about unity.

The behavior of a prolate ellipsoidal void (aq:by:cy = 3:1:1) orientated with its
long axis in the (x, x,) plane is shown in Fig. 18. These results are for Z,, = 0 and
are determined for three starting orientations: § = 0°, 45° and 90°. Included in the
figure is the behavior of the bonded rigid prolate particle which is used as the reference

Since the stress drop is defined for a void of unit initial volume, the increase in stress drop with y can
be interpreted as an overall softening contribution.
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FiG. 18. Effect of initial orientation on subsequent evolution of orientation and stress drop of an initially
prolate void (ay: by:cy = 3:1:1) of unit volume at y = 0.

in calculating the total shear stress drop. The shear stress drop of the bonded particle
and that of the void relative to the uniform matrix are each shown to reveal the nature
of the separate contributions to the total stress drop. The bonded rigid particle
provides maximum reinforcement (i.e. most negative stress drop), when its long axis
is aligned with the principal directions of straining, f = +45°. The unconstrained
voids close as y increases and the curves are terminated when b/b, = 1/10. The stress
drop of the unconstrained void relative to the uniform matrix is quite insensitive to
the orientation of the void. The variation of the total stress drop AX,, mainly arises
from the contribution due to the bonded particle. The constrained void displays
almost no variation in total stress drop with initial orientation, but the drop is about
twice that for the constrained void which starts as a sphere in Fig. 16.

5. CoNCLUDING REMARKS

At zero mean stress, whether in shear or under axisymmetric straining, accounting
for contact between the void surface and its nucleating particle results in a predicted
reduction in softening of roughly a factor of two compared to a calculation which
ignores such contact. Under distinctly negative mean stress states the effect is even
larger. The subsequent growth of the void is also appreciably affected by contact
between the void surface and the particle.

For the most part, phenomenological models of dilatational plasticity such as
that of GursoN (1977) have been developed and calibrated using results for voids
undergoing axisymmetric straining with no allowance for contact between void surface
and particle. The present results for the stress drop under axisymmetric stress states
agrees well with the stress drop determined from the Gurson model when the stress
triaxiality exceeds about X = 1/3. (See HuTCcHINSON and TVERGAARD, 1987, for a more
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complete discussion when void-particle contact is ignored. The issue of isotropic
hardening vs kinematic hardening brought out in Fig. 6 is unresolved.) At lower stress
triaxiality and in shear the present results indicate that the Gurson model should
overestimate the softening due to nucleation by as much as a factor of two.
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APPENDIX

ANALYSIS OF ISOLATED VOID UNDER REMOTE AXISYMMETRIC STRESSING

The various boundary value problems for the spherical particle and the nucleation of a
spherical void in an unbounded, incompressible elastic—perfectly plastic matrix were posed in
Section 2 along with identification of the quantities to be calculated. In what follows, the
computational procedure is outlined for determining the stress and velocity distribution in the
matrix. All other quantities of interest derive from these distributions.

Given remote yielding with stresses (2.2) and remote straining, E, the actual velocity field
minimizes

1 )
() = Eﬁj,-jc',-jdV—L T, dA, (Al

where T is prescribed on 4, and the strain rates derived from @ approach K as r - co. This
functional can be applied to the infinite region as it stands since s5,£;, = O(r~ ) for large r for
the incompressible, elastic—perfectly plastic solid. The velocities are generated from a velocity
potential according to

4, = —r 2(sin@) " '"(Wsin@)y, w=r"'¥,. (A2)

r

The potential used in the calculations was

¥ = —lE sin20+a,cot0+ Y Y a,r T [Pucos 0)] . (A3)
k=2,4,... j=123,..

where the amplitude factors, a, and a,,, were chosen to minimize ®. The lead term in (A3)
generates the remote uniform strain rate field while the second term with amplitude a, is the
spherically symmetric contribution which has strain rates which vary like 2. The reduction
of the minimization problem to a standard algebraic problem for the unknown amplitude
factors follows the procedures spelled out previously in BUDIANSKY et al. (1982) and HuT-
CHINSON and TVERGAARD (1987). The numerical results reported in Section 2 were computed
using 7 free amplitude factors (ay, a»,, @22, G35, A4y, A42, and a45) to minimize P,

Several of the boundary value problems were subject to constraints on the velocities on A,,.
For the casc of the fully bonded rigid particle, the conditions 4, = 1, = 0 on 4, were imposed
on the velocities, which resulted in 5 linear constraints on the 7 amplitude factors. The limit
stress distribution ¢ surrounding the rigid bonded particle was obtained by incrementing the
remote strain using the uniform stress state X as an arbitrary starting point. After 10-15
increments on £, totaling several times &, the stress distribution no longer changes and is
identified with ¢°. The stress rise due to the bonded particle in (2.11) is caleulated using (2.10).
During or subsequent to nucleation, contact between the void surface and the particle is
modeled by enforcing #, = 0 at the equator of the void whenever the equatorial radius of the
void decreased below that of the particle. This condition places one linear constraint on the
amplitude factors.

FINITE ELEMENT ANALYSIS OF PERIODIC ARRAY OF VOIDS IN SHEAR

In the numerical analysis for the periodic array of particles undergoing simple shear (Fig.
8) finite strains are accounted for. The analysis is based on a Lagrangian formulation of the
field equations, with the Cartesian x' coordinate system used as reference. The Lagrangian
strains are given by

Ny, = %(uij+uj.i+uﬁ'uk.j)s (A4)

where i are the displacement components on the reference base vectors and ( ), denotes
covariant differentiation in the reference configuration. The contravariant components of the
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KirchhofT stress tensor 77 and the Cauchy stress tensor ¢”/ are related by
= /Glga", (A5)

where g and G are the determinants for the metric tensors g,; and G,; in the reference
configuration and the current configuration, respectively.

The finite strain generalization for elastic—perfectly plastic theory used here is analogous to
that of HutcHinson (1973) for hardening materials. The incremental stress—strain relationship

is of the form t¥ = LY, with the tensor of instantaneous moduli given by

y E o o v , 3 545
ikt T 01 ik il Gl[ Jk RNt Vol B
L 1+V{Z(G G"+GIGH) + 5 GIGH ~ 5 2}

()]

— NGH 4 G+ GIT* + Gy, (A6)
1, for o, = d 6.=0
5 { or g,=0, and ¢ (AT)

10, for ¢,<0, and &, <O0.

Here, o, = (3s,,57/2)/? is the effective Mises stress and s” = ¥~ G"1§/3.

A linear incremental solution procedure is employed in which the equations governing the
stress increments At¥/, the strain increments Ay, etc., are obtained by expanding the principle
of virtual work about the current state, using (A4). To lowest order the incremental equation
is

J {AT8n,;+ 77 Aukdu, ) AV = J AT'du;dS— U T"f'(sn,.,.dwj T'6u, dS], (A8B)
v 14 S

A

where ¥ and S are the volume and surface, respectively, of the body in the reference con-
figuration, and T are contravariant components of the nominal surface tractions. The brack-
eted terms are included to prevent drifting of the solution away from the true equilibrium path.
Furthermore, drifting of the stress state to a point slightly outside the yield surface is prevented
by a proportional reduction of such stresses to a point on the yield surface.

Due to the periodicity described in connection with Fig. 8 it is only necessary to analyse the
half-cell ABCD indicated in Fig. 8a. The boundary conditions on top of the region are specified
by

W =U, w=U, on DC (A9)
where U, and U,, are constants, U, is prescribed, and U,, is calculated such that the average

stress X ,, has the prescribed value,

1 (* 1 (*
EzzzibJ[)Tzd.xl, E'Z:EJ_ledx“ on DC. (A10)

The periodicity and symmetry conditions on AC, BD and AB are such that equilibrium and
compatibility with the neighboring cells is satisfied. This is expressed by using the length
measuring coordinates &, &5, 1, and 7, (see Fig. 8a)

u'(¢)) =u' (&), u*(€)) = u’(), (A1D)
T'(E)=—-T'¢), T*¢)=-T*), (A12)
ul(n) = —u'(n), ()= —u’(n), (A13)
T'n) =T'(n),  T?(m) =T (1) (A14)

From (A11) and (A13) it follows that the displacements vanish at points 4 and B, and at the
center of the particle.
At the void surface, (x')?+ (x?)? = a?, the conditions depend on whether or not there is a
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particle. If there is no particle, the conditions are
T'=T*=0. (A15)

In the case where there is a particle, the current angle between the x'-axis and the radius
through a surface point is denoted by ¢. Then, for a bonded particle, the conditions are

w'cosp+utsing =0, —u'sing+uicosd = a¥, (A16)

where W is the incremental angle of rotation of the particle, which is determined such that the
resultant moment acting on the particle is zero.

At nucleation all points on the void surface are simultaneously released from the particle,

and the surface tractions are stepped down to zero in a few subsequent increments. At points,
where the radius decreases below q, sliding contact with the particle is assumed, described by

u'cosg+ulsing =0, —7T'sing+7T%cosg =0. (A17)

The point remains in ¢ontact as long as the normal stress is compressive. Other points of the
void surface that are not in contact with the particle satisfy (A15).

An approximate solution of the equilibrium equation (A8) is obtained by the finite element
method, using the boundary conditions (A9)—(A17). In the solutions a special Rayleigh-Ritz
finite element method (TVERGAARD, 1976) is used to find the edge displacements according to
$e periodicity conditions (A11)-(A14), the displacement U, in (A9), and the particle rotation

in (A16).

The initial geometry of the region analysed is shown in Fig. 11 for a case where a/b = 0.25
and ¢/b = 3. The mesh used for the finite element solution is shown in the figure, where each
quadrilateral consists of four constant strain triangular elements.




