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ABSTRACT: The mechanics of void nucleation in an elastic-plastic solid stressed into the
plastic range is studied with emphasis on the contribution of nucleation to softening of overall
stress-strain behavior. Results for nucleation of an isolated spherical void in an infinite matrix
under triaxial remote stressing are used to predict overall stress-strain behavior when inter-
action between voids is negligible. Calculations for nucleation of a void at a rigid spherical
particle in a cylindrical cell model the simultancous nucleation of a uniform distribution of
voids. A strong dependence of the nucleation process on the matrix material specification is
found when results based on isotropic hardening are contrasted with those based on kinematic
hardening. At issue is the magnitude of the softening contribution due to void nucleation.
This issue and the role of nucleation in promoting flow localization are discussed.
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Nucleation of voids in a plastically deforming metal has two consequences. Most obvious
is the generation of damage, which ultimately will lead to failure of a ductile metal after
further straining. A less obvious but equally important consequence is the reduction in
macroscopic strain-hardening capacity due to the nucleation process itself. independent of
the subsequent growth of the void. The shedding of the load carried by a particle when a
void nucleates by interface debonding between the particle and the matrix or by particle
cracking causes a redistribution of stress and strain in the matrix, which alters the overall
stress-strain behavior of the material. The consequences of nucleation in offsetting matrix
strain hardening can be dramatic. There is evidence that some high-strength steels undergo
shear localization simultaneously, or almost simultaneously. with the onset of void nucleation
at second-phase particles.

This paper focuses on the effect of void nucleation on macroscopic stress-strain behavior.
We introduce the subject by displaying one set of results from a numerical calculation carried
out in the section on Cell Model Calculations. An axisymmetric cell model is used to model
the simultaneous nucleation of voids at a uniform distribution of rigid spherical particles.
The cell, which is shown in Fig. 1, is constrained such that the ends remain planar and the
lateral surface remains cylindrical. The macroscopic true stresses S and T are obtained as
averages of the local normal stresses over the respective surfaces. Prior to nucleation, § and
T are increased monotonically with a fixed ratio, 7/S, and the distribution of stress and
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FIG. 1—Cylindrical cell model of uniform array of void-nucleating spherical particles.

strain in the cell is calculated. Then at a given macroscopic true stress state, the void in the
cell is “‘nucleated” by incrementally reducing the traction across the particle/matrix interface
to zero.

The overall stress-strain behavior shown in Fig. 2 was calculated for nucleation under
constant S and T at two stress levels (other possibilities are analyzed in the section noted
above). The horizontal segments display the amount of overall strain which occurs during
nucleation. In this example, the volume fraction of the spherical particle is 1%, the stress
triaxiality is 7/8 = 0.5, and the multiaxial stress dependence of the matrix material is
described by J,-flow theory. Included in Fig. 2 for reference are the stress-strain behavior
in the absence of nucleation and the stress-strain behavior of the cell containing a void which
at the start of straining has a 1% volume fraction. The strain following nucleation at finite
stress is only slightly less than corresponding strain when the void is present from the start,
and following nucleation the two curves are similarly close. By contrast, the growth in
volume of the void during nucleation, AV, has a very strong history dependence. This can
be seen in Fig. 3, where the volume growth, normalized by the particle volume V, and the
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FIG. 2—Owverall siress-strain behavior for nucleation at constant stress for rigid spherical particles in
a matrix material governed by 1,-flow theory (p = 0.0, ¢, = 0.004, n = 5, v = 0.3).
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FIG. 3—Normalized volume increase as a function of overall strain for nucleation at constant stress
in a Jy-flow theory matrix.

initial yield strain ¢, is plotted as a function of the macroscopic logarithmic strain. The
segment of the curve ending in the solid dot corresponds to the void growth during nucleation,
which is far less than that experienced by a void present from the start.

The first part of the paper deals with the basic problem of nucleation of a spherical void
in an infinite matrix under remote triaxial stressing. Application of the solution to this
problem to predict the effect of nucleation on macroscopic stress-strain behavior is discussed.
The second part of the paper presents an analysis of the cylindrical cell model described
above. In each part, the role of the multiaxial stress characterization of the matrix material
is explored by using both J,-flow theory (isotropic hardening) and kinematic hardening.
Nucleation as predicted by the Gurson model [1] is related to the results of the present
paper in the section on Effect of Nucleation.

Nucleation of an Isolated Void and Its Effect on Macroscopic Stress-Strain Behavior

Before analyzing in detail the mechanics of void nucleation, we first outline the nature
of the results expected and show how these can be used to predict the effect of void nucleation
on stress-strain behavior.

Consider nucleation of a single void at a spherical particle of unit volume in an infinite
matrix stressed into the plastic range by proportional application of a remote stress 3.
Imagine that the interface between the particle and the matrix debonds, either partially or
completely, when the remote stress reaches Z. This nucleation event causes a redistribution
of stress, some growth of the void and additional straining in the matrix. Denote the average
extra strain that occurs as a result of nucleation of the void, over and above what occurs in
the absence of nucleation, by AE, such that X, AE, is the extra work done by the remote
stress due to nucleation. For proportional stressing to 2, AE is an isotropic function of X,
assuming the unstressed matrix is isotropic. Approximate results for AE are given in the
next section.

Let M denote the current overall (diagonally symmetric) incremental compliances of a
macroscopic element of material subject to macroscopic stress % when no particles nucleate
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voids. Thus the macroscopic strain increment is
E,, = Mijklikl (1)

in the absence of nucleation. Now suppose that during the stress increment ¥ voids nucleate
in the material element corresponding to a volume fraction increment p. If the nucleated
voids are sufficiently widely spaced so that their interaction can be ignored (for example,
p sufficiently small), then in the presence of nucleation

Ei, = Muklikl + pAE; 3]

With L = M™' as the incremental moduli of the material element in the absence of
nucleation, it follows from Eq 2 that in the presence of nucleation

ii,’ = LijklEkl - ﬁAE:j (3)
where

AEU = LijklAEkl (4)

The quantity pAX can be interpreted as the average stress drop due to nucleation of an
increment of void volume fraction p relative to the stress in the absence of nucleation at
the same macroscopic strain. Figure 4 displays the schematic interpretation of pAE and pAE
relative to the overall stress-strain curves with and without nucleation.

The focus in this paper is on the first nucleation of voids in a void-free material, but the
above discussion also applies, at least approximately, to subsequent nucleation adding to
voids nucleated earlier in the stress history. Then, L and M correspond to incremental
moduli and compliances in the presence of a volume fraction p of voids but without nucleation
of additional voids p. The extra average strain AE due to nucleation of the isolated void
should in general account for interaction with preexisting voids.
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FIG. 4—Interpretation of A% and AE in uniaxial tension.
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Extra Strain, AE, and Stress Drop, A, Due to Nucleation of an Isolated Spherical Void

In this section the nucleation of an isolated spherical void in an infinite block of material
is modeled as a mechanics problem. The solution procedure 1s given in the Appendix, and
approximate recipes for AE and AX are presented in this section.

An infinite block of material is stressed into the plastic range by proportional application
of remote stress . The void is nucleated from a fictitious *‘particle”” which deforms uniformly
with the matrix prior to nucleation. Thus at the onset of nucleation the block of material
is in a uniform state of stress X and the “particle” is taken to be spherical with unit volume.
The nucleation process is modeled as a plasticity problem in which tractions across the
particle/matrix interface at the onset, T? = X n, are incrementally reduced to zero. Spe-
cifically, traction rates, — 2,77, are applied to the interface, with A, = 0 coinciding with
the onset of nucleation and A, = 1 with completion. The tractions on the interface are
reduced to zero quasi-statically and uniformly. In many instances, the actual debonding
process is likely to involve a dynamic interfacial separation by progressive cracking, which
is not modeled here. A more detailed treatment of the debonding process is given by
Needleman [2]. Contact between the “particle”” and the nucleating void is ignored, but does
not occur in any case in which the remote stress has modest triaxiality. We consider also
the possibility that the nucleation process occurs under proportionally increasing remote
stress A. Y simultancously with traction-rates — A\ T" on the interface.

The void nucleation problem just described is a small strain plasticity problem. The
sequence of incremental problems in the void nucleation process does not lead to either
large geometry changes of the void or large strain changes anywhere in the material sur-
rounding the void. For our purposes here we take the hardening level in the matrix, as
measured by the tangent modulus E, of the effective stress-strain curve, to be constant during
nucleation. In doing so, it is imagined that the strain changes during nucleation are small
compared to the strain at the onset of nucleation such that only very small changes in E,
would occur during nucleation, and these are neglected. Results will be presented for both
J-flow theory (isotropic hardening) and kinematic hardening to give some indication of how
strongly the predictions are influenced by the matrix material description. Some influence
is certainly expected since the stress changes in the vicinity of the void which occur during
nucleation are distinctly nonproportional, and thus the material characterized by isotropic
hardening should offer more resistance to plastic straining than the kinematic hardening
material.

Let o, be the initial tensile yield stress of the material, E its Young’s modulus, and ¢, =
o,/ E the tensile strain at initial yield. For computational convenience, we have taken the
material to be incompressible. For J,-flow theory the increment in the stress deviator, s, is

§, =

wIin

Eé,/ — (E - E[)S,,Sk,ék,/(‘rg . (5)

for loading (o, = (0,)m, and s,,€, = 0) and

. 2 .
S EEG,, (6)

for elastic unloading. Here o, = (3s,5,/2)" is the effective stress and, as already mentioned,
E, is the tangent modulus associated with the remote stress state 3. For kinematic hardening
theory based on the shifted J,-invariant, yield is specified by (35,5,/2)”* = o, where § =
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s — o and « is the deviator specifying the center of the yield surface. For plastic loading
(S:iiéu > 0)!

Eé; — (E — E)§,Sué/oi )

Wt

and

o, = Elf.,fklf'u/("(% (8)

while Eq 6 holds for elastic increments with & = 0.
The remote stressing is taken to be axisymmetric with respect to the 3-axis such that the
nonzero components of X are

s =385, 2p=2y=T (9)

Denote the remote mean and effective stresses by 2, and £, so that
1
.= E(S +27T)and 3, = |§ — T| (10)

Let 3E, denote the increase in the remote axial strain component E;; which is prescribed
to occur during the nucleation process (that is, the strain change associated with X.2). The
solution procedure is given in the Appendix. The results of the calculations are now reported.

J,-Flow Theory Results

We begin by an example in Fig. 5 based on J,-flow theory which shows the evolution
during nucleation of bath the total dilatation of the void, AE],. and the dilatation just due
to nucleation, AE,,, for three different choices of 38E,/¢, where ¢, = o,/E is the elastic
strain at yield. The dilatation due to nucleation, AE,,, is the total dilatation with the
contribution due to 8Ey (that is, due to X\, 3) subtracted off. Note that AE,, is essentially
independent of 3E, and thus is, indeed, meaningfully identified as the contribution due to
nucleation. The normalized quantities AE],/(2,/E) and AE,,/(Z,/E) are also found to be
essentially independent of X,/ E and of E,/E when it is small (that is, E/E < 0.1); they do,
however, depend on triaxiaiity, X = X,,/%,, as shown below.

The significance of considering different values of 8 £y is that, in an actual nucleation
process, this value is determined by the mechanism of debonding together with the way in
which the external loading is applied. Since no particular debonding mechanism is studied
here, the relevant value of 8E, cannot be determined. Therefore it is of interest to extract
the part of the macroscopic behavior that is essentially independent of 8E .

An important feature of the process is the relatively small dilatation due to nucleation.
Were the process a linearly elastic one (in an incompressibie elastic matrix), then

AE, = (9/4)%,/E (11)

The dilatation contribution AE,, at the end of nucleation in Fig. 5 is only about twice this
elastic value. This feature stems from the distinctly nonproportional stressing in the vicinity
of the void during nucleation and the resistance of the material to plastic deformation needed
to enlarge the void. By contrast, if the void were nucleated this way in a nonlinear elastic
material (for example, a J.-deformation theory material), its enlargement would be inde-
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FIG. 5—Normalized dilatation contribution for nucleation of a spherical void in an infinite matrix
governed by I,-flow theory (E//E = 0.02, S/5, = 5).

pendent of the history and would depend strongly on the strain at nucleation. The present
results for the dilatation are essentially independent of prior plastic strain.

The deviatoric part of AE is much larger than the dilatation resuiting from a redistribution
of stress and strain throughout the matrix. It is inversely proportional to E, rather than E.
Given that AE must have an isotropic dependence of X, we write for the contribution due
just to nucleation

AE, = F(X)IJE, + G(X)%,5,/E (12)

where X' is the deviator of ¥, %, = 3,,, 3, = (3£,3//2)" and X = %,/%,. For axisym-
metric stressing with § = T, Eq 12 is a general representation of the stress dependence, but
under general remote stressing Eq 12 will only be valid if one can neglect dependence on
the third invariant of ¥ and on 33, . The functions F and G also depend implicitly on
E,/E and 3Ey, but our numerical calculations indicate that they vary by less than 2% for
E,/E in the range from 0.01 to 0.1. Figure 6 displays the dependence of F and G on 3E,
for the case X = 1 (T = 0.45). The results for the triaxiality dependence of F and G shown
in Fig. 7 are computed with 8 Ey/e, = 10, but as seen in Fig. 6, the dependence on $Ey is
very weak. Included in Fig. 7 are predictions for F which derive from the Gurson [/] model,
which will be discussed in the section on Effect of Nucleation.
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FIG. 6—Dependence of F and G on S8Ey/€, for nucleation in a matrix governed by J,-flow theory.

As mentioned earlier, interaction between the “particle” and the void surface is ignored
in the calculations once nucleation starts. Inspection of the numerical solution indicates that
the void surface pulls away from the particle at every point if 7/8 > 6.1 and 3E, is not
large. Thus, only the values of Fand G at very low triaxialities (X < 0.44) would be changed
by a caiculation which accounted for constraint of the particle on the void deformation.

Kinematic Hardening Results

For proportional stressing histories, the two plasticity theories (Eqs 5 and 7) coincide,
but the isotropic hardening material offers more resistance to plastic flow under nonpro-
portional histories than does its kinematic counterpart. As already mentioned, the nucleation
process involves distinctly nonproportional stressing near the void, and thus it is expected
that the curvature of the yield surface will affect AE.

The calculations of F and G were repeated using the kinematic hardening description of
the matrix material, Eqs 6 to 8. In this case, there is a strong dependence on Y = 3../0, as
well as on the triaxiality measure X = 2, /3,. For kinematic hardening Eq 12 is rewritten
as

AE, = F(X,Y)S,/E, + G(X,Y)3,8,/E (13)

Plots of F and G as functions of X are shown in Fig. 8 for three levels of Y = X,/a,. For
Y just above unity, corresponding to nucleation before the material hardens appreciably,
the results for kinematic hardening are only slightly larger than those for isotropic hardening,
as would be expected. For nucleation at larger values of Y, the strain contribution AE
predicted by the kinematic theory is significantly larger than the isotropic hardening result,
by factors as much as two or three.
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FIG. 7T—Dependence of F and G on triaxiality for matrix material governed by J,-flow theory.

As will be even clearer from the cell model results in the next section, the enhancement
of the strain produced by nucleation in a kinematic hardening material over that in an
isotropic hardening material is a major effect. In other problem areas, such as plastic
instability phenomena, where there are significant differences between the predictions based
on these two material models, the isotropic hardening model invariably tends to be overly
stiff compared with experimental observations. The issue here is not fully reversed loading
and Bauschinger effects; rather, it is continued loading under nonproportional stress his-
tories. The kinematic theory reflects, albeit crudely, the high curvature or possibly even a
corner, which develops at the loading point of the subsequent yield surface.

To calculate AX defined by Eq 4, assume that AE is given approximately by Eq 12 or 13
even when Poisson’s ratio v is not ¥2. Then by Eqs 4 and 12, one obtains

1
1 -2

GEMSU (14)
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FIG. 8—Dependence of F and G on triaxiality and Z.,/a, for matrix material governed by kinematic
hardening theory.

when E, < E. This result also holds for kinematic hardening with the respective F and G
values. The dilatational part of the stress drop due to nucleation at a given macroscopic
strain necessarily becomes ill-defined for an incompressible matrix material.

Cell Model Calculations of Overall Stress-Strain Behavior as Influenced
by Void Nucleation

The effect of a uniform distribution of spherical particles that nucleate voids simultaneously
is studied by numerical solution of the axisymmetric model problem illustrated in Fig. 1.
Here, the particles are assumed to be rigid, which means that in contrast to the calculation
in the previous section, the stress state in the matrix material is not uniform prior to
nucleation. As in the previous calculations, nucleation is simply modeled by releasing the
displacements of the matrix material on the particle-matrix interface and incrementally
reducing the corresponding surface tractions to zero.

Finite strains are accounted for in these cell model calculations. A Lagrangian formulation
of the field equations is used, with reference to a cylindrical coordinate system, in which x!
is the radius, x* is the circumferential angle, and x* is the axial coordinate. The displacement
components on the reference base vectors are denoted w', where «” = 0 by the assumption
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of axisymmetry. The Lagrangian strains are given by

(ur.j + uj,l + uﬁuk./) (15)

B

Th‘f =

where ( ) ;denotes covariant differentiation in the reference configuration. The contravariant
components 7' of the Kirchhoff stress tensor on the deformed base vectors are related to
the Cauchy stress tensor o/ by

T = VGiga! (16)

where g and G are the determinants for the metric tensors g, and G, in the reference
configuration and the current configuration, respectively.

The finite strain generalization of J,-flow theory used here has been discussed in detail
in Ref 3. The incremental stress-strain relationship is of the form

T = Ll/k[,,'.‘k[ (17)
with the tensor of instantaneous moduli given by

E
1+

v

ekl
1-—2vGG

Ll/k[ —

{% (GH*GI! + G'GH) +

E/E -1 sust

- B%m T,T} - %{G“T" + G+ Gl + Gty (18)

Here, the value of B is 1 or O for plastic yielding or elastic unloading, respectively, and the
tangent modulus £, is the slope of the uniaxial true stress versus natural strain curve at the
stress level o,. The uniaxial stress-strain behavior is represented by a piecewise power law

a
E’ for o =< oy
E _=
Oy | O "
E ((‘;0) , foro > o (19)

where o, is the uniaxial yield stress and n is the strain-hardening exponent. The values of
these parameters are taken to be oo/E = 0.004 and n = 5, and, furthermore, elastic com-
pressibility is accounted for, taking Poisson’s ratio v = 0.3.

The finite strain generalization of kinematic hardening theory is analogous to the above
equations. The full formulation has been given in Ref 4 and will not be repeated here.

In the numerical solution, equilibrium is based on the incremental principle of virtual
work, and the boundary conditions, specified in terms of the nominai surface tractions 77,
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are
@=0 T =T"=0, atx’ =0 (20)
w=Uy,, T'=7T=0, atx®= B, (21)
i =U, TP=1T"=0, atx' + A, (22)
' = 0 before nucleation 12 N = R?
7+ = 0 after nucleation } at ()" + () Ri (23)

The two constants {/; and Um are displacement increments, and the ratio Ul/ U,y is calculated
in each increment such that there is a fixed prescribed ratio between the macroscopic true
stresses T and § (see also Ref 5).

The initial geometry of the region analyzed is shown in Fig. 9, where R, is the inclusion
radius, A, is the initial radius of the cylindrical body analyzed, and 2B, is the inclusion
spacing along the cylinder axis. In the cases analyzed, the initial geometry is specified by
By/A, = 1 and R,/A, = 0.2466, corresponding to a volume fraction 0.01 of particles. The
mesh used for the finite element solutions is shown in the figure, where each quadrilateral
consists of four triangular elements.

Figure 2 shows the stress (S — T)/o, versus the average axial logarithmic strain E, for
two cases, where nucleation takes place under constant macroscopic stress, at § = 3.00,
and § = 3.60d,, respectively, while T/S = 0.5. The matrix material follows J,-flow theory.
For comparison, the behavior of matrix material with the bonded rigid particle without
nucleation and the behavior when the void is present from the beginning are also shown in
the figure. Prior to nucleation, the macroscopic stress-strain curve with a rigid particle differs
from that of the matrix material by less than 1%. After nucleation the stress level for a
given value of the strain E; is nearly reduced to the level found when the void is present
from the beginning. Figure 3 shows the corresponding growth AV of the void after nucleation,

NN
| SO
N
>
L — °

FIG. 9—Initial geometry and finite-element grid for cylindrical cell model.
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FIG. 10—OQverall stress-strain behavior for nucleation at constant strain from rigid spherical particles
in a matrix material governed by J,-flow theory (p = 0.01, ¢, = 0.004, n = 5, v = 0.3).

normalized by the particle volume V,, and the initial yield strain ¢, = o,/ E. The solid dot
on two of the curves indicates the point where nucleation is completed (that is, the tractions
on the particle-matrix interface have been relaxed to zero). At these positions the growth
is far less than that of a void present from the beginning.

Figures 10 and 11 show the same computations repeated with the only difference that
here nucleation takes place under a constant macroscopic axial strain E;, but still such that
the stress ratio 7/S = 0.5 remains constant. Here the macroscopic stresses decay during
nucleation, to values somewhat below the curve for a void present from the beginning, and
simultaneously a great deal of elastic unloading occurs in the matrix material near the voids.
However, after some subsequent stretching these unloading regions disappear, and the
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Es
FIG. 11—Normalized volume increase as a function of overall strain for nucleation at constant strain
in a l,-flow theory matrix.
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FIG. 12—Overall stress-strain behavior for nucleation at constant stress from rigid spherical particles
in a matrix material governed by kinematic hardening theory (p = 0.01, ¢, = 0.004, n = 5, v = 0.3).

strains at which the macroscopic stress for the onset of nucleation is reached again are nearly
identical to those at the end of nucleation in Figs. 2 and 3.

Kinematic hardening theory has been used to analyze the same cases, as illustrated in
Figs. 12-15. Clearly, kinematic hardening has a strong influence on the predictions in the
present cases, as would be expected based on Fig. 8, since the material has high hardening
and the relevant values of %,/0, are 1.5 and 1.8, respectively. Figures 12 and 13 show that
the stress-strain curves after nucleation remain below that corresponding to a void present
from the beginning, in contrast to the behavior found for J,-flow theory. Thus, the mac-
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FIG. 13—Normalized volume increase as a function of overall strain for nucleation at constant stress
in a matrix material governed by kinematic hardening theory. For reference, the prediction for a matrix
governed by I,-flow theory is included as a dashed line curve for the case when the void is present from
the start of straining.
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FIG. 14—Overall stress-strain behavior for nucleation at constant strain from rigid spherical particles
in a matrix material governed by kinematic hardening theory (p = 0.01, ¢, = 0.004, n = 5, v = 0.3).

roscopic strain increment resulting from nucleation is significantly larger according to ki-
nematic hardening theory. Figures 13 and 15 show that kinematic hardening also predicts
a larger void growth during nucleation. For completeness, the comparison between the dil-
atation predicted by the two matrix hardening rules is included in Fig. 13 for the case in
which the void is present from the start of straining. Initially, there is essentially no difference
between the two predictions since the straining is everywhere nearly proportional; however,
the two sets of predictions diverge as straining progresses due to nonproportionality asso-
ciated with the finite expansion of the void.

The results for AE,, obtained by these cell model calculations may be compared with Eq
2, using Eqs 12 and 13. Here, E,, are interpreted as logarithmic strain increments, and 2,,
are interpreted as true stress increments. The computations illustrated in Figs. 2 and 12 are
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200 o S#30,
Void present
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1 0
oo_b'-‘Q'“”'"Q Nucleation stress
reoched ogain
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0 1 J
o) 0.3 0.2
Es

FIG. 15—Normalized volume increase as a function of overall strain for nucleation at constant strain
in a matrix material governed by kinematic hardening theory.
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most conveniently used for this comparison, since here 3., = 0 during nucleation. Then,
with 7/S = 0.5 prescribed in all the calculations, X,/2%, = 4/3 is constant, and the values
of 3./0, at nucleation are either 1.5 or 1.8 in the cases considered. Table 1 shows the values
of AE, and AE, obtained by the cell model computations, according to Eq 2 with p = 0.01,
and the values of the functions F and G computed from Eqgs 12 and 13.

The two J.-flow theory calculations give values of F that are not too much higher than
the value F = 8.0 given in Fig. 7, whereas the values found for G are significantly larger
than the value 1.7. The results found for kinematic hardening agree qualitatively with Fig.
8, since both F and G are increased relative to the J,-flow theory results. For the lower
stress level, 2,/0, = 1.5, the increases are of the same order of magnitude as those found
in Fig. 8. For the larger stress level 2./, = 1.8, the values of both F and G are much higher
than those in Fig. 8.

For the values of F and G calculated by the cell model, it should be noted that the volume
fraction increment p = 0.01 is rather large. The value of the tangent modulus E, in Eqs 12
and 13 is taken to be that of uniformly stressed matrix material at the stress level corre-
sponding to the onset of nucleation; but due to the power-hardening relation (Eq 19) used
here, this will only give a good approximation for small values of p. The accuracy is least
good for kinematic hardening at the higher stress level 2,/a, = 1.8, since here the maximum
stress-carrying capacity is nearly reached at the point where nucleation ends.

Effect of Nucleation as Predicted by the Gurson Isotropic Hardening Model

A prototype constitutive relation modeling void nucleation and growth has been proposed
by Gurson [/], and this mode! is probably the most complete and widely used model of its
type. Gurson’s theory is endowed with a yield condition, a flow law, a measure of void
volume fraction, a rule for nucleating voids, and a law for evolution of the void volume
fraction. Its yield surface was derived from approximate solutions to a volume element of
perfectly-plastic materiai containing a void, and it was extended to strain-hardening materials
under the assumption of isotropic hardening. The stress-strain behavior of the void-free
material is part of the specification of the model. With no voids present the model reduces
to the classical isotropic hardening theory based on the von Mises invariant, J,-flow theory.

Here the main equations governing the Gurson model will be briefly stated, and the
quantity AE introduced in the section on Nucleation of an Isolated Void will be identified.
We will also attempt to bring out the effect of nucleation on macroscopic strain behavior
as predicted by the model. A more complete specification of the model can be found in the
papers by Saje, Pan, and Needleman [6] and Needleman and Rice {7], who particularly
emphasize the role of nucleation in offsetting strain hardening and in promoting flow
localization.

TABLE 1—Values of F and G computed using the cell model for AE; and AE,.

AE, AE, X Y E/E F G
Fig. 2 0.973 ~0.446 4/3 1.5 0.0395 9.3 3.4
Fig. 2 2.62 ~-1.22 4/3 1.8 0.0191 10.2 6.3
Fig. 12 1.391 -0.614 4/3 1.5 0.0395 13.2 6.8
Fig. 12 5.55 -2.37 4/3 1.8 0.0191 209 28.4
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Gurson’s yield function involves two material state parameters, the void volume fraction
p and a measure of the current flow stress of the matrix material 0. With X as the macroscopic
stress and with X', 2, and X, defined as before, the yield condition is

(X, 0,p) = (E) + 2q,p cosh (iq— &) - 1-gqip=0 (24)
g 2 o

The factors g, and g, were introduced in Ref 8 to bring the yield function into better
agreement with numerical results for periodic arrays of spherical voids. Gurson’s original
proposal employed ¢, = ¢. = 1, while the suggestion in Ref 8 was g, = ¥2 and ¢, = 1.
See Ref 5 for a discussion of the current status of the yield function in comparison with
experimental data and micro-mechanical calculations.

In addition to the yield condition, the following equations are postulated for plastic loading

Ep = o®d/83, (25)

S, Er = (1 - p)oo[l/E(s) ~ 1/E] (26)
P = Purowin T Pructeanon (27)
Puoern = (1 = p)EL, (28)
Pascteanon = A(0. 2,)6 + B(o, 2,)3, (29)

Normality is invoked in Eq 25; the condition for continued yielding, = 0, allows one to

determine \ as
N 1 1V 9D & L ob 9d _
A= — T o + 00— = | -——
(st (22w

Equation 26 equates the macroscopic plastic work rate to the plastic work rate in the matrix,
where E (o) is the tangent modulus of the effective stress-strain curve of the matrix at o.
Equation 27 separates the increase in void volume fraction into a contribution due to growth
of previously nucleated voids (Eq 28) and a contribution due to nucleation of new voids
(Eq 29). Several nucleation rules of the form (Eq 29) have been proposed [6,7], but will
not be detailed here.

The strain contribution due to nucleation, pAE, in Eq 2, as predicted by the Gurson
model is readily determined from the foregoing equations. For the first voids nucleated
(when p = 0) at X, the result for the void of unit volume is

cosh (XI— 2—) 3 (31)

assuming £, <€ E. Thus, when cast in the form of Eq 12, the Gurson model gives

F= %q, cosh(3¢,X/2)and G = 0 (32)
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and this prediction is compared with the isotropic hardening results in Fig. 7 using both
g, = ¥»and q, = 1, in each case with g, = 1. The absence of any dilatational contribution
(G = 0) at first nucleation is a consequence of the normality assumption (Eq 25) invoked
for the model. While not strictly correct, the dilatational contribution derived in the section
on Nucleation of an Isolated Void is generally much smaller than the deviatoric contribution.

Nucleation is included in the Gurson model in a highly coupled manner. The quantitative
effects of nucleation on macroscopic behavior are not transparent in the model. The fact
that the model is in good agreement with the micro-mechanical calculation of AE for isotropic
hardening lends confidence to the model.

The effect of nucleation as specified by the Gurson model is transparent in the case of
pure shear. Since £, = 0 in pure shear, the change in p is due entirely to nucleation. With
3., as the macroscopic shear stress and with 7 = o/V'3 as the equivalent shear stress in the
matrix material, the yield condition (Eq 24) implies (with ¢, = 1)

p=(1-pn (33)
Then, with
vr = V3er = V3e(1/E, — V/E)

as the equivalent shear strain rate in the matrix, Eqs 26 and 33 give the macroscopic shear
strain rate as simply

2Ef = 7

independent of p. Thus the relation between the macroscopic shear stress-strain curve and
the corresponding matrix curve is exceptionally simple as sketched in Fig. 16. The relation
between 2, and E¥, depends only on the current value of p, independent of when the voids
have been nucleated.

Under other stress histories, the post-nucleation state is not so simply related to the history
where voids have been present from the start since void growth itself has a strong history
dependence. Under proportional stressing the following statement quite closely reflects the
Gurson model prediction. The deviatoric part of the strain following nucleation of p volume
fraction of voids is almost the same as the deviatoric strain if the voids were present from
the start and had grown to a current void volume fraction p. In other words, under pro-
portional stressing, the deviatoric macroscopic strain at a given current void volume fraction
p is essentially independent of whether the voids were present from the start or whether
they were nucleated late in the history.

Conclusions

Relatively small amounts of void nucleation can significantly affect macroscopic hardening
behavior. Moreover, the longer nucleation is delayed generally the larger will be its softening
contribution. For example, in uniaxial tension from Eq 12 or 13,

2
PAE, = 3 PF2/E, (34)
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if the small dilatational component is neglected. Delaying nucleation increases X, and de-
creases E,, thereby increasing the strain contribution due to nucleation. The tangent modulus
of the macroscopic stress-strain curve in the presence of the nucleation, EX, is related to
the tangent modulus in the absence of nucleation, E,, by

3 _E_ 1 b2
E'N_ .3_E;[1 +233F23:| (35)

Regarding p as a function of E, and replacing p/3, with (dp/dE,)/E ¥, one obtains
— =1-sF—= (36)

This formula reveals that the macroscopic hardening rate as measured by £/ is not only
diminished by delayed nucleation, as just discussed, but also by an increased rate of nu-
cleation as measured by dp/dE, and by triaxial effects through F. As discussed by Needleman
and Rice (7], the macroscopic hardening rate can become negative at rates of nucleation
which are not excessively large. In uniaxial tension, 2 F/3 from the J,-flow theory calculation
is about 2. A typical value of 2,/E, is about 1, in which case E will be negative if dp/dE, =
2. In other words, a burst of nucleation giving a 1% volume fraction of voids over a 2%
range of strain will produce a negative overall strain hardening rate over this range. Such
bursts of nucleation are destabilizing, leading to flow localization on the macroscopic scale.

A separate issue which has surfaced in the present study is the unusually strong sensitivity
of the predictions to the choice of multiaxial plasticity law for the matrix material, that is,
to isotropic or kinematic hardening. The F-factor in Eqs 34 and 36, as computed assuming
kinematic hardening, can be as much as two or three times the corresponding value computed
assuming isotropic hardening. It is an open question at this point as to which plasticity law
gives the more realistic representation of matrix behavior in this application. Based on
experience with other applications involving nonproportional stressing where large differ-

pVOIDS NUCLEATED

I, vs. 2E;, WITH p VOIDS
PRESENT FROM BEGINNING

2Ef or ¥

FIG. 16— Effect of nucleation on shear siress-strain behavior according to Gurson theory.
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ences between predictions on the two plasticity laws are found, the predictions assuming
isotropic hardening are likely to underestimate the strain contribution while the kinematic
hardening predictions may be more realistic. If so, bursts of nucleation at finite strain are
even more destabilizing than one would infer from the Gurson mode! for example.

The remarkable thing about the kinematic hardening results in Fig. 12 is that at a given
stress, the strain subsequent to delayed nucleation is greater than when the void is present
from the beginning. This effect seems counterintuitive since even a nonlinear elastic solid
would only experience the same strain following delayed nucleation as when the void is
present from the start. The effect can be understood only in terms of the nonproportional
stressing in the vicinity of the void dunng nucleation and the reduced resistance to plastic
flow associated with the high curvature of the kinematic hardening yield surface.
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APPENDIX

Method for Calculating AE

To formulate a minimum principle for the displacement rates, let

1
w(s, €) = Ed"é"’ 37

be the stress dependent strain-rate potential of the matrix material evaluated using either
Egs 5 and 6 for J,-flow theory or Eqs 6 and 7 for kinematic hardening theory. For the
moment, suppose the void is nucleated in a spherical block of material of radius R (sub-
sequently R will be allowed to become infinite), which is stressed into the plastic range by
uniform tractions X, n; applied to its surface Ag, where n is the outward unit normal to Ag.
As discussed in the section on Nucleation of an Isolated Void, during nucleation traction
rates — X, TP are applied to the surface A, of the unit void being nucleated, simultaneously
with traction rates X,E,-,-n, applied on A;. For the finite region with outer radius R, the
actual displacement rates minimize

W = j w(s, €) dV + ko j T, dA —~ X, j S, n i, dA (38)
v A A
[ R

where V is the region exterior to A, and interior to Az.
The principle must be modified such that the functional remains bounded when R — oo
To this end, let € be the strain rate at infinity associated with X\, and let @* be a dis-
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placement rate field such that

& =

1 % x
i E(u:,/ + u)

Following procedures similar to those given for visco-plastic behavior in Ref 9, one can
show that Eq 38 can be replaced by the modified functional of the additional displacement
rates

W = f [w(s, € — w(s, &) — S,6,] dV + f (A3,m + AT dA (39

where n points into the void on A, and the additional rate quantities are defined by

é=¢-¢andi =0 - 0" (40)

The modified function is minimized by the actual additional displacement rates. Moreover,
the modified functional remains well-conditioned as R — = for all fields for which € decays
faster than r~%2,

The desired extra strain contribution, AE, due to nucleation of the void is obtained for
the finite problem by integrating over the nucleation history the incremental contribution

AE, = % (dn, + a'n) dA (41)

where @' is that part of the additional field due to just the traction rate —A,T? on A,. As
discussed in the section on Nucleation of Isolated Voids, the contribution due to A2 ;n;; on
Ay is not included. The two contributions to the additional field are easily separated as
discussed below. Equation 41 applies for the finite region but cannot be used for the limit
solution with R = c. An alternative means of calculating AE, which does apply in the limit,
makes use of the reciprocal theorem and an auxiliary solution. For the auxiliary solution,
let 2/n, be applied on A, with zero traction rates on A, and let &* be the associated
displacement-rate field calculated using the same distribution of the incremental moduli as
in the incremental nucleation problem itself. By reciprocity

$1AE, =f Saitn, dA = —f RoT0i# dA “2)
AR Ag

since 9 is that part of the solution associated with zero traction rates on A,. The integral
over A, in Eq 42 is readily calculated in the limit R — o, and the individual components
of AE can be computed by making several appropriate choices for 3.

Since the solution has axial symmetry with respect to the x;-axis, let r and 6 be radial and
azimuthal coordinates with 6§ measured from the x;-axis. The additional velocity fields in
the incompressible matrix are generated from a velocity potential according to

4, = —r¥sin 0)"(¥ sin 0),, i, = r-'¥, (43)
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The velocity potential used in the calculations was

¥ o=gycot® + o > a,r ' [Pdcos 0)], (44)

k=24, =122 .
where the a’s are amplitude factors which were chosen to minimize Eq 39 and P.(x) is the
Legendre polynomial of degree k. The lead term, g, cot 9, is the spherically symmetric

contribution.
Denote the set of free amplitude factors by A,, { = 1, N and introduce the notation

N N
=2 Adub, é=13 Ae® (45)
i=} i=1

The functional (Eq 39) becomes

W = %ii} M,AA + i\ B, A, {46)
where
M, = fv Lowe, Ve dV @7)
and
B, = 1 (42,1, + NTHUP dA + fy [Lijw — Liglézen dV (48)

Here L are the incremental moduli at a given point and L* are the incremental moduli at
infinity. The stress and the incremental moduli are updated at each incremental step of the
solution allowing for the possibility of elastic unloading or plastic loading. The equations
for the increments of the amplitude factors follow immediately from Eq 46 as

N
> M;A, = -B, i=1N (49)
J=1

The volume integrals in Eqs 47 and 48 were evaluated numerically using 10 x 10 Gauss-
type formulas over the domain of r and 8. The surface integrals in Eqs 48 and 42 were
evaluated analytically. The auxiliary problem and the problem for #i°® are obtained from Eq
49 simply by changing the B-vector. For the auxiliary problem A.X is replaced by 34 and
A, 1S set to zero; for the problem for w’, A, (and €~) is set to zero. The strain contribution
due to nucleation of the void is readily calculated from Eq 42. The calculations for F and
G reported in the body of the paper were carried out using the same seven free amplitudes
as in Ref 9, corresponding to a, and a,, with k = 2, 4andj = 1, 2, 3 in Eq 44.
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