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ABSTRACT: A study is made of the deformation of a round bar of pure power-law hard-
ening material under tension containing a central penny-shaped crack. Several important
issues related to fracture mechanics are examined, including the near-tip stress and strain
field and its relation to the analogous problem in plane strain.
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This paper continues a study initiated in a previous paper [/]? in which the
problem of a penny-shaped crack in an infinite body subject to general re-
mote axisymmetric stressing conditions was studied. Now the objective is the
finite problem of a round bar containing a centered penny-shaped crack.

The material is an incompressible, isotropic solid. A pure power hardening
relation between stress and strain is assumed so that in simple tension

e/ = alo/ap)" (D

where €y and ¢ are a reference strain and stress and « is an extra constant in-
troduced for convenience of application. For J, deformation theory, Eq 1

generalizes to
S 3 a|: % ]"—lﬁ (2)

€0 2 [2i] 0y
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where §;; is the stress deviator and o, is the effective stress defined by

3 172

g, = (7 S,-,-S,-,) 3)
It is also convenient to define an effective strain
2 172

€ = (? € eij> 4

which coincides with the tensile strain in uniaxial tension so that o, and ¢,
satisfy Eq 1. A catalog of fully plastic solutions for this class of materials is
now available [2].

The incompressible finite-element program (INFEM) developed by Needle-
man and Shih {3] will be used. In this program the incompressibility constraints
are imposed directly on the nodal degrees of freedom. We recapitulate briefly
the method which has been explained in detail in Ref 3.

The basic finite element employed is a quadrilateral composed of four con-
stant-strain triangles arranged so that the diagonals and edges of the quadri-
lateral form the sides of the triangles as depicted in Fig. 1. For each triangle in
the quadrilateral there is one constraint equation arising from the incompres-
sibility condition. For each quadrilateral there are four such equations, but
only three of these are independent. Two of these three constraint equations
can be used to express the nodal displacements of the central node of the quad-
rilateral in terms of the nodal displacements of the corners. Therefore there is
only one independent constraint to be satisfied in each quadrilateral. The
quadrilaterals are arranged in strips ranging from one boundary of the grid to
another, as shown in Fig. 2. Two such strips are considered as one substructure,
and the centerline of nodes is employed to satisfy the remaining constraints.

Problem and Method

Axisymmetric fully plastic analyses were catried out for a round bar of
radius b under uniform tension containing a central penny-shaped crack of
radius a, shown in Fig. 3, fora/b = 0.25,0.5,0.75andn = 1, 3, 5, 10. Asa
comparison, analyses were also carried out for a plane-strain center-cracked
panel (CCP) under remote uniform tension for a/b = 0.25,n = 1, 3, 5, 10

I
=

FIG. 1—Quadrilateral element.
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Crack Strip n  Strip (n+1)

FIG. 2--Strip arrangement of elements.

FIG. 3—Geometry of round bar with penny-shaped crack.

and a/b = 0.75, n = 1, 3, 5. Because of the symmetry with respect to the
crack, only the upper half of the specimen was modeled. A typical finite-
element mesh for the case a/b = 0.25 is shown in Fig. 4; the mesh has 12 quad-
rilateral elements in circumferential direction about the crack tip and 27 ele-
ments in the radial direction from the tip to the external boundaries. The
meshes used for the other ratios a/b were similar to the one shown here. The
meshes have a small hole at the crack tip with radius equal to 1 to 2 percent of
the crack length or the remaining ligament, whichever is the smaller dimension.
According to Ref 4, this hole has virtually no effect on the J-integral and mouth
opening displacement forn = 1 ~ 20 for plane-strain fully plastic analysis.
The INFEM program employs linear or modified Newton-Raphson itera-
tion to obtain the desired solution. The parameter tracking technique was used
by which the solution corresponding to n = 1 was taken as the initial guess to
obtain the solution for » = 3 and which in turn is used as the initial guess to ob-
tain the solution for » = 5 and so on. In our calculation, for a/b = 0.25 and
0.5, Newton’s iterations were used. It typically took three or four iterations to
reach the desired accuracy. For a/b = 0.75, several linear iterations were used
at the start and then Newton’s procedure was used to obtain convergence.
For convenience, uniform displacement boundary conditions were imposed
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FIG. 4—Finite-element mesh for a/b = Y4,
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on the ends. (L/b = 1.7 fora/b = 0.25and L/b = 2.3 fora/b = (.75, where
2L is the length of the bar.) The results show that the stresses on the end bound-
ary are very close to uniform tension.

For the axisymmetric problem the M-integral was evaluated. For the power-
law material, the M-integral is given by [5]

(2n —1)

m oijnju,-] ds (5)

M= L[Wx,-n; — O R EXE

where

e, Jon+ism
] (6)

€ n
w(e) = jo O;jd G,'j - n F1 (10060[ e

and § is any closed surface which encloses the crack and n is the unit outward
normal to § at each point. IfJis defined as the energy release rate per unit length
of crack edge for a penny-shaped crack in a round bar as in the plane case, that
is

1 dPE
2wa da

J=- )

where PE is the potential energy of the cracked body, then it follows that

=2 ®)

21a2

As discussed in Ref 1, J also plays the role of the amplitude of the plane-strain
crack-tip singularity fields which dominate as the crack is approached. As a
check on the numerical accuracy, the M-integral was evaluated along a number
of torus-like surfaces ringing the edge of the penny-shaped crack. In all cases
the computed values of M were found to be within about 1 percent of the mean
value (over all the surfaces).

Results and Discussion

Results for J-Integral and Crack-Opening Displacement

The normalizations of J and &, are given by

by = = 1 — @/b)?)
0."¢%a

)

hy = 6",, [1— (a/b)2]
aegp
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where 0,” and ¢, are the remote effective stress and effective strain which sat-
isfy the power-law relation, Eq 1, and é; is the opening of the crack at its center.
Numerical results for A, and &, fora/b = 0.25,0.5,0.75andn = 1, 3, 5, 10 are
given in Table 1 and Figs. 5 and 6. The results for h; and h, fora/b = 0 from Ref
1 are also included for comparison purposes.

TABLE 1—h, and h; for penny-shaped crack in a round bar.

_Ja —(a/b)})"

hl @
0, 7¢,"a
a’b n=1 n=3 n=35 n=10
0 0.9549 1.331 1.484 1.639
0.25 0.9369 1.267 1.335 1.264
0.5 0.8350 0.9163 0.8379 0.5520
0.75 0.8010 0.5959 0.3926 0.1334
5p(1 — (a/b)D)”
hy=———%—
€ a
a/b n=1 n=3 n=35 n=10
0 1.909 2.375 2.525 2.637
0.25 1.858 2.131 2.107 1.819
0.5 1.626 1.451 1.183 0.6631
1.0 0.7957 0.4369 0.2640 0.08439
h
10
S5
3
1.0 —] nel
3
%)
10
0 | . {
0.25 0.50 075
a/b

FIG. 5—h,(a/b, n) defined in Eq 9.
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FIG. 6—h,(a/b, n) defined in Eq 9.

The present results for the linear elastic case corresponding to n = 1 were
compared with the results of Benthem [6]. It was found that for all a/b, the
averages of the J-integral over all the valid contours enclosing the crack tip were
within 3 percent of the values given in Ref 6.

Stress Field Near the Crack Tip

According to Hutchinson-Rice-Rosengren (HRR) theory [7,8] for a plane-
strain crack the stress field of the dominant singularity at the crack tip has the
form

J ]1/(n+1)~
0; = 0 [ P 0;(8,n) (10)

where r is the distance from the crack tip and 8 is the angle measured from di-
rectly ahead of the crack. The plane-strain singular fields, Eq 10, also hold at
the edge of a penny-shaped crack, where r and 6 are then local coordinates in a
plane perpendicular to the edge of the crack. At issue is the size of the crack-tip
region over which the singular field, Eq 10, dominates. We compared the cal-
culated stress distributions from the finite-element method with the HRR field.
The normal stress ahead of the crack o,, is normalized in the following way
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a,/d,” a,,/ 0y
24 — yy 1)

< J > 1/(n+1) < J > 1/(n+1)
0."¢,"a aop€Epa

which is necessarily independent of J (and of load). According to HRR theory,
from Eq 10

0,/ 0o _ [ _a \VatD
J Vet ( oL > a,,(0,n) (12)
< Qop€ya >

where [, is an integration constant. I, and d,, can be found in Ref 7.

The plots of this ratio are given in Fig. 7forn = 1, 3, and 10 and a/b = 0.25
and 0.75. The corresponding curves for the plane-strain centered crack are
also included. It is seen that for the penny-shaped crack the normalized nor-
mal stress ahead of the crack falls well below that for the HRR singular field
where r/a > 0.02when n = 3. Forr/a < 0.02 our finite-element resolution of

yy
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\ | <{ K1 field
0 01 0.2

FIG. 7a—Normalized stress ahead of crack edge forn = 1.
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FIG. 7c—Normalized stress ahead of crack edge for n = I0.

the stress field is not sufficient to make a more accurate comparison. What is
clear, however, is that the size of the region in which the stresses are well ap-
proximated by the singular field is less than about 0.02a. It should be noted
that for a given n these curves depend only slightly on a/b and the differences
between the results of the penny-shaped crack and the plane-strain crack are
relatively small.

Displacement and Near-Tip Strain of the Bar

A significant difference between the axisymmetric problem and the plane-
strain problem is brought out by the plots of Fig. 8, which show the displace-
ment of the boundaries for the case a/b = 0.25 and n = 10. Included in the
figure for the plane-strain specimen is the rigid-perfectly plastic slipline mode
of deformation. It is seen that the solution for n = 10 reflects the limiting
discontinuous behavior of the perfectly plastic solution. By contrast, no slip
discontinuities are possible in the perfectly plastic axisymmetric problem and,
in fact, it can be seen that the presence of the crack does not significantly per-
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Penny-shaped crack

1.151
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FIG. 9—Contours of constant effective strain ¢, for penny-shaped crack in round bar with
n =10, a/b = V4 and ¢,° = I

Plane strain crack

| - _ _ i

FIG. 10—Contours of constant effective strain ¢, for plane-strain crack-problem with n = 10,
a/b=Vs ande,> = 1.
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turb the boundary of this specimen. Contours on which the effective strain is a
constant are shown in Fig. 9 for the penny-shaped crack and in Fig. 10 for the
plane-strain crack, both for n = 10, a/b = 0.25, and loaded such that ¢, = 1.
Obviously, there are significant differences between these two cases. For the
plane-strain case the strain concentrates in rather narrow bands emanating
from the tips. On the other hand, for the penny-shaped crack, the strain field
is much more diffuse. A comparison of Fig. 10 with Fig. 9 reveals the substan-
tially larger strain concentration in the plane-strain problem at a given dis-
tance from the curve tip.

The shear strains (y = 2¢,4) on the 45-deg line emanating from the tip are
shown in Fig. 11. It is again seen that for the plane-strain crack the shear strain
is 15 to 20 times higher than the shear strain for the penny-shaped crack.

Finally, to aid in obtaining the limit load for the rigid-perfectly plastic penny-
shaped cracked round bar, we define as o;® the remote stress at which ¢, first
attains the value ¢ at the outer cylindrical boundary. Computed values of
0:°/{ool1 — (a/b)*]} are shown as solid lines in Fig. 12forn = 1, 3, S, and 10.
The dashed curve for n = o is the estimate of the limit load and this was ob-
tained by cross-plotting against 1/n and extrapolating to the limit n — o for
given values of a/b.
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FIG. 12—Remote stress oy at which ¢./¢, first attains unity at the external surface of a
round bar, and extrapolation to limit load corresponding ton = oo,
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