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ABSTRACT

A uniform ice sheet moves steadily against a flat-
sided fixed offshore structure. The ice deforms in
creep: the problem is to determine the relation be-
tween the force on the structure and the velocity of
the ice. The problem cannot be solved analytically,
but a convenient approximate solution can be found
by the reference stress method of creep structural
analysis, which makes systematic use of a small num-
ber of numerical and analytic solutions to related
problems, including solutions to the corresponding
problem for a perfectly-plastic material. The method
is applicable to any observed relation between stress
and strain rate. It is tested by comparison with addi-
tional numerical solutions, and with published data
on indentation experiments.

INTRODUCTION

Extremely complex deformations occur when
floating ice interacts with offshore structures. The ice
deforms elastically, creeps, yields and breaks, and the
broken fragments pile up in front of the structure and
are carried round it. It is important to know how to
calculate the forces that ice exerts on a structure in
this situation. A full understanding of the problem is
still some way off. This paper sets out an analysis of
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one aspect of the problem, and analyses the forces
that are set up when a slow-moving floating ice sheet
moves against a structure. The ice moves slowly
enough for all the deformation to be by creep; frac-
ture does not occur. The geometry is a simple one
(Fig. 1): a straight-sided uniform ice sheet comes into
contact with the straight vertical face of a rigid struc-
ture, advancing at right angles to it with a uniform
velocity.

This is obviously a severe idealisation of the com-
plex geometry and non-uniform material properties
that occur in the field. Creep will generally be the
dominant mode of deformation only when the ice is
moving very slowly. An analysis of the creep problem
is worthwhile because it represents one limiting case.
When the ice velocity is high, the actual ice force will
generally be smaller than the force corresponding to
this limiting case, because of the effects of fracture
(Palmer et al., 1983).

MATERIAL IDEALISATION

An analysis requires an idealisation of the material
properties of ice. At strain rates up to 10™* s in
compression, and up to 107°s™' in tension, the
deformation of ice is dominated by creep. At higher
strain rates, fracture becomes dominant. Within the
creep range, creep strains are generally large by com-
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parison with the elastic strains that also occur: if
ice at —7°C is loaded in uniaxial compression at
2 MN/m? (290 Ib/in?), a typical stress close to the
contact with an offshore structure, the creep strain
after 10 min is 107 (Gold, 1977), five times the
elastic strain. The creep strain rate € depends strongly
on stress, and is observed to be proportional to the
nth power of the stress, where n is about 3 (Glen’s
law). At strain rates above 107° 57!, the power law
breaks down and leads to an even more rapid increase
of strain rate with increasing stresses.

In the present study, ice is idealised as an iso-
tropic creeping material whose instantaneous strain
rate is a function of the stress, but not of the strain
or the previous loading history. Under uniaxial
loading, the stress o corresponding to a strain rate é€,
and the stress o, corresponding to a strain rate é,,
are in general related by

é/éo = f(o/0o) . )]
In the power-law creep regime, for instance
é/éo = (0/00)n s (2)

It is helpful to consider two extreme cases of power-
law creep. If n tends to infinity, eqn. (2) becomes the
stress—strain-rate relation for a rigid-plastic material
with yield stress g, (so that the strain rate can only
be non-zero when o reaches 0y), whereas nequal to 1
corresponds to a linear-viscous material (and also
would correspond to a linear-elastic material if the
strain rate € were replaced by the strain €, and g4/éq
were identified as the Young’s modulus).

The stress—strain-rate relation can be generalised
to describe multiaxial stress. The most straight-
forward generalisation of the power-law stress—strain-
rate relation (Palmer, 1967) is

po3 b0 |3 W .
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where é,-/- is the strain rate tensor, s; the deviatoric
stress tensor, and the repeated subscript summation
notation is used. This generalisation is widely used in
glaciology and ice mechanics. The extreme values of n
again correspond to a rigid-plastic material obeying
a von Mises yield condition (n—0), and to an in-
compressible linear viscous material (n = 1).

It has to be recognised that the stress—strain-rate
relation (3) is an idealization. Sea ice is often aniso-

tropic, while its creep rate may depend on the first
and third invariants of the deviatoric stress tensor as
well as the second invariant sz;sz;. The analysis
described below can be generalised to take account
of these effects.

METHODS OF SOLUTION

The problem is to find the force between an ice
sheet and a structure, when the ice moves steadily to-
wards the structure and deforms by steady-state creep
described by the material stress—strain-rate relation
(3). The extent of deformation is sufficiently small
for the geometry not to alter significantly,

Applied mechanics offers at least five approaches
to this problem. They are:

(A) through a complete solution, combining the
differential equations of compatibility and equilib-
rium, and the non-linear stress—strain-rate relation.
Some indentation problems have known closed-form
solutions if the material is linear, but the non-linear
problem is out of reach of analytical solution;

(B) through a non-inear finite-element or finite-
difference formulation, leading to a numerical solu-
tion;

(C) through bound methods (Martin, 1966;Palmer,
1967; Ponter, 1970), which make it possible to use
relatively straightforward calculations to set upper
and lower bounds on the total force corresponding
to a certain relative velocity. These methods use
postulated stress and strain rate distributions, and are
related to variational methods in elasticity;

(D) through the reference-stress concept
(Anderson et al., 1963; Marriott, 1970), which makes
it possible to arrive at approximate solutions to
non-linear structural problems;

(E) through an approximate solution based on
similarity and dimensional analysis.

This study concentrates on the reference-stress
method, which is attractively simple and gives
analytical expressions which can be applied to a wide
range of geometries and material properties.

REFERENCE STRESS THEORY

The origin of the reference-stress method was in
the engineering analysis of structures subject to creep.




Its objective is to correlate creep deformations in a
structure directly with an equivalent creep test. If a
structure is statically determinate, the loads deter-
mine the stresses throughout the structure (indepen-
dently of the stress—strain relation). All that is then
required to calculate the deformation rate of the
structure is to determine stresses under operating
loads, to carry out creep tests at those stresses to
determine the corresponding strain rates, and finally
to apply standard methods to calculate the deforma-
tion rates from the creep strain rates. Indeterminate
structures are much more difficult to analyse, because
the stresses themselves depend on the stress—strain-
rate relation, which may be complex and uncertain.
That suggests the following question: at what stress
ought one to measure the strain rate of the material,
if one wishes the calculated deformation rate for the
structure to be as little sensitive as possible to the
details of the stress—strain-rate relation? Among the
primary motivations for development of the
reference-stress method were experimental uncertain-
ty about the power-law exponent » and the need for
calculations for structures that operate beyond the
threshold of power-law breakdown.

The idea can be taken further: if an exact or an
approximate solution to a creep problem can be
written in a form which is insensitive to the details
of the stress—strain-rate relation (to the power-law
exponent n, for instance), it becomes possible to
incorporate into the solution at least some of the
results from solutions to the same problem for related
but simpler stress—strain-rate relations, such as
those from linear elasticity and perfect plasticity.
The reference-stress method does this in a systematic
way. The results are approximate, and are not usually
either upper or lower bounds, but the method is very
simple, and comparison with exact solutions shows
that the results are accurate enough for engineering
applications. The method also provides a systematic
method for making the results of numerical calcula-
tions applicable to a wider family of problems.

Imagine a general structure subjected to a single
load P, and let the velocity of the point of applica-
tion of the load be U; the rest of the structure
boundary is either free of external loads or fixed to
an immovable foundation. The rate at which the load
does work on the structure is PU, and can be equated
to the rate at which work is dissipated internally

PU = fol'/éi]'dV 4
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integrated over the whole structure, where o0j€;; is
the rate of dissipation per unit volume, the rate at
which the stress 0;; does work on the strain rate €,
and of course varies from point to point. The right-
hand side is now reqritten so that

PU = oR F;[or] VR, (5)

where og is a reference stress, Fe[or] is the strain
rate that corresponds to the reference stress®
(through the material stress—strain-rate relation), and
VR is a reference volume (and can loosely be thought
of as an equivalent volume over which the deforma-
tion occurs). The reference stress is chosen so that

OR/P = Y/PL, (6)

where P is the limit load that corresponds to plastic
collapse of a structure with the same geometry but
made of a perfectly-plastic material with yield stress
Y. In other words, the ratio of the reference stress
to an (arbitary) yield stress is the same as that of the
applied force to the limit load corresponding to that
yield stress. The use of the limit load corresponding
to a yield stress is no more than a device to find the
reference stress, and it is not implied that the material
is perfectly-plastic.

The method can be illustrated and tested by apply-
ing it to a problem which has a known analytic solu-
tion. Consider a thick-walled cylindrical tube
(internal radius a, external radius Az), composed of a
material which creeps, and loaded by internal
pressure, under plane-strain conditions, so that axial
deformation is prevented. We wish to estimate the
velocity U at which the internal radius increases. The
work equation corresponding to (4) is

2mapU = opFeor] VR - 7

per unit length of tube, where p is the internal
pressure. The limit pressure for a thick-walled tube is
(2//3)Y In X (Calladine, 1969), for a von Mises
material with a yield stress Y in uniaxial tension.
From eqn. (6), the ratio of the reference stress to the
pressure is the same as that of the limit pressure to
the yield stress Y, and so

or = p/((2\/3)In ). 8)

*Throughout this paper, F¢[x] means the uniaxial strain rate
that corresponds to a uniaxial stress x, and Fy[x] means the
unjaxial stress that corresponds to a uniaxial strain rate x;
square brackets are not used in any other context.
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An elementary elastic solution shows that for a tube
made from a linear-elastic incompressible material,
the radial displacement U induced by a pressure p is

U = $pal(1-\DE . ©

Here, U and E are to be interpreted as the radial
displacement and the Young’s modulus for an elastic
material, and as the velocity and the ratio between
uniaxial stress and strain rate for a linear viscous
material. The strain rate Fg[oR] corresponding to the
reference stress og is then or/E. Substituting into (7)

32 pa p p

2ma E-_— L vy 10
P13 E  Zn2Emr ® (10)

and so

VR = 2n(ln N)2a?/(1 —\72). an

These values of Vg and og can now be used general-
ly, for any stress—strain-rate relation, and (7)
becomes

gzu@nmxp{ p }
a 1-22 " LeA3)InA

a numerical function of A multiplying the strain rate
that corresponds to the reference stress. If the
relation between strain rate and stress is known from
an experiment, eqn. (12) can be used directly to
determine the velocity U, and it tells us that the
appropriate uniaxial stress for a creep test is the refer-
ence stress p/(24/3) In A,

If stress and strain rate are related by the power-
law relation (2), eqn. (12) becomes

(12)

U 3p

a - 1-2\"72

(-% In )\)H' €0 (pleg)” (13)

and so the pressure is related to the velocity U by

1 - >\—2 n 2 1-1/n
= —ln)\) ao(Ulaég)t™ (14
r=(5,) (5 o(Ulao)" (14)
The exact solution to the problem is

2 1/n n _
p = (——) — (=X ao(Ulaél)'™.  (15)

Vil

Table 1 compares the reference-stress solution (14) to
the exact solution (15). It can be seen that the agree-

TABLE 1

Comparison between reference stress and exact solutions

(Thick-walled cylinder (external radius/internal radius) = 2.)

Power-law  Dimensionless internal pressure to velocity ratio,
exponent, plo,(Ulaé)'™"
n
reference stress exact
1 0.5000 0.5000
1.5 0.5849 0.5749
2 0.6326 0.6204
3 0.6842 0.6724
4 0.7116 0.7012
S 0.7285 0.7194
10 0.7636 0.7582
oo 0.8004 0.8004

ment is encouragingly good, and that the maximum
discrepancy is never more than 2 per cent.

APPLICATION TO ICE FORCE PROBLEM

The method can now be applied to the ice force
problem, in which a semi-infinite ice sheet of thick-
ness ¢ moves at a velocity U against a structure and is
in contact over a width D (Fig.1). The relative
velocity between the structure and the ice is then U,
and eqn. (5) expresses the rate at which the ice force
P between the structure and the ice does work
on the ice. Substituting P/(Pr/Y) for ogr, eqn. (5)
can be rewritten

PLjY U
Felop] = —— —

Vg D (16)

so that the strain rate corresponding to the refer-
ence stress is (P /Y)U/VrD. It follows that the refer-
ence stress corresponds to that strain rate, and so

_ EL/_YE}
oR Fa[ Dl 17)

It is helpful to introduce dimensionless variables ¢
and &, defined so that

¢ =PL/YDz, 18)
_ VR /th
(PLYD) )
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Fig. 1. Problem definition.

After substituting for Vr and Py in egn. (17), and
rearranging, it becomes
&
P=9DtF,|— |.
Y
This is a general formula for the ice force P induced
by an ice velocity U.

The next step is to find the quantities ¢ and ,
which are functions of the aspect ratio D/t of the
contact between the structure and the ice. The
simplest case is plane deformation, which will occur
when the contact width D is small by comparison
with the ice thickness #. The Prandtl solution to the
plastic problem is known to be exact, and gives

¢ = PLIYDt = (n+2)\/3 (1)

The solution for a von Mises material is the appropri-
ate one, since it corresponds to the limiting case of
the stress strain-rate relation (3).

In the thick-walled cylinder example, the reference
volume was found from the elastic solution, Un-
fortunately, this cannot be done for the indentation
problem, because the displacement field of the elastic
solution (Sadowsky, 1928; Sneddon, 1951) includes

(20
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symmetry plane X

Fig. 2. Mesh for finite-element calculations.

logarithmic terms which grow indefinitely as distance
from the indentor increases. A finite indentation
force therefore induces an infinite relative displace-
ment between the indentor and points in the far field.
This is an awkward feature of the elastic solution
only, and does not arise if n is greater than 1: it is
discussed further in the Appendix.

Since the elastic solution is not available, a numeri-
cal solution for another value of n is needed to find
Y. A two-dimensional finite-element solution was
carried out for n equal to 3. It made use of the initial
strain method at a sequence of time intervals (Ponter
and Brown, 1978). At time ¢, the current stresses are
used to evaluate the creep strain €g&¢ generated in
a time interval 8¢ which then yields, by elastic
analysis, the change in stress 50,. This forward inter-
pretation procedure is further refined by use of the
Runge-Kutta method. The finite<lement mesh and
boundary conditions are shown in Fig. 2, where each
quadrilateral is subdivided into two triangles with
linear variation in displacement within each element.
At time ¢=0 the boundary velocity is given a
constant value and the elastic/creep solution is
continued until the stress rates have reduced to an
acceptably low value, The steady-state solution gives
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a compatible strain-rate field consistent with the
indentor velocity. An upper bound on the indentor
load can then be evaluated by equating the rate of
work done by the indentor to the total rate of creep
energy dissipation throughout the finite element
mesh, and that value of P was used to determine y,
which is 0.445. It gives a value which is greater than
that obtained by integration of the stresses (which
are constant within each element) across the surface
of the indentor; that alternative is not a bound, and
was considered less reliable.

The other extreme case is plane stress, which is
approached when D/t is large, when the structure
contact width is large by comparison with the ice
thickness: ¢ is then 2/2/3. A second finite-element
calculation for n equal to 3 determines Y to be 0.385.

It was not possible to carry out a numerical creep
solution to find ¢ for intermediate values of D/t
since to do so would have required a full three-
dimensional analysis. The plane-strain and plane-stress
values of  are close together, and since the ice force
is proportional to ¥ ™' and n is at least 3, uncer-
tainty about ¢ for intermediate D/t has little influ-
ence on ice forces calculated from eqn. (20). How-
ever, ¢ is more sensitive to D/¢: it can be determined
by standard techniques in plasticity theory. The
precise boundary condition at the contact between
the structure and the ice influences the results. If
the ice is free to slide vertically across the face of the
structure (“free slip’”), upper bound calculations
give

(r+ 23,

¢ = min (22)
2 V2 ot
3 (” 4 D)'

The second expression is based on a velocity field
proposed by Croasdale et al. (1977), and can be
refined slightly.

Plane stress conditions imply that the ice is free to
move in the vertical direction, perpendicular to the
ice sheet, and to slide vertically across the face of the
structure. Friction and adhesion will often prevent
these sliding movements and modify the deformation
field in the ice. If the ice is not free to slide (“no
slip”), and the shear strength of the interface with the
structure is at least as large as the shear strength of
the material

(m+2DN3,
¢ = min %(1.59{‘25), (23)

FOF G 5)

These expressions for ¢ are again upper bounds, and
could be further refined.
The results are summarized in Table 2.

COMPARISON WITH ADDITIONAL NUMERICAL
SOLUTIONS

The reference stress solution presented here is
based on two solutions, an analytic solution for n
tending to infinity and a numerical solution for n
equal to 3. One test of the method is to obtain
numerical solutions for additional values of n, and to
compare the forces calculated from those solutions
with the forces obtained from the reference stress
results summarized in Table 2. Table 3 makes this
comparison for n equal to 5 and 7; it proved impos-
sible to obtain numerical solutions for higher values
of n because of convergence difficulties, The table
shows that agreement is satisfactory, although not as
good as for the thick-cylinder example, probably
because that example is kinematically determinate.
As n increases, the force calculated from the
numerical finiteelement solution is greater than the
force calculated from reference stress: that suggests
that the deformation fields allowed by the finite-
element analysis are overly restrictive as the strain
rate distribution begins to approach, at larger n, the
discontinuous strain rate distribution associated
with plastic collapse.

COMPARISON WITH MEASUREMENTS

A number of investigators have carried out
indentation experiments in which flat-faced indenters
were driven at a constant velocity into the edges of
plates of ice, and the force was measured. The refer-
ence-stress calculation implies that the relationship
between P/¢Dt and Uf/¢yD should be identical
with the relationship between stress- and strain-rate




TABLE 2

Reference stress theory: results summary

115

The ice force is

U/Djl
P = ¢DtF,| =
¢ “[w

where D is the contact width, ¢ is the ice thickness, U is the ice velocity, F;[x] is the uniaxial stress
corresponding to a uniaxial strain rate x and ¢ and y are given by the following:

Condition ) v
plane strain (D/t—0) (r+2)/\/3 = 2.986 0.445
intermediate D/t 2.986
free slip between ice min
and structure QN3 A+ %\/5 t/D) between 0.445 and 0.385
intermediate Djft; 2.986
no slip between ice min { (2//3) (1.5 +Y%~/2 ¢/D)
(2//3) (1 +¥%/2 (¢/D)''* + % (/D))
plane stress (Dft—o0) 2//3 = 1.154 0.385
TABLE 3 ik T T T T Tt 1kl
0+ ]
Comparison between the force from a finite-element solution = N
(PFE) and the force found by the reference-stress method ¥ I" {
(PR) = T a ]
" PFE/PR g "i— P l_‘“’ > 1
lane stress plane strain -2 5|, """ J
3 1 1 1078 4 J
5 1.130 1.083 i
7 1.154 1.103 - g 1

in uniaxial compression. This gives us a straight-
forward method of comparison between theory and
experiment.

Frederking and Gold (1975) carried out edge-
indentation tests on plates of columnar-grained
freshwater ice at —10°C. The ice had random orienta-
tion of the c-axes parallel to the plane of the plates,
and a grain diameter of 2—5 mm. The plate thickness
ranged from 25 to 98 mm and the indenter widths
from 13 to 150 mm; the range of D/t was from
0.21 to 3. In most of the tests the velocity U was
8.3 X 107° mm/s. The results allow the reference
stress P/¢Dt to be calculated for each test. In Fig. 3,

10
stress MN/m?2

Fig. 3. Comparison between indentation tests and uniaxial
tests:

Indentation: @ Frederking and Gold, A Michel and Toussaint.
Uniaxial: 0 Gold and Krausz, & Gold, 0 Michel and Paradis.

the axes are stress and strain rate, and the solid
circular symbols represent the relation between
Pj¢Dt and U/¢yD in Frederking and Gold’s tests.
It can be seen that they lie close to a line with slope
1/3; this is consistent with the prediction of
reference-stress theory that in the power-law creep
regime the ice force should be proportional to the
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one-third power of the velocity (since the reference
stress P/¢pDt is then proportional to the one-third
power of the strain rate UjpyyD), and is also
consistent with Frederking and Gold’s observation
that for fixed D/t force is proportional to the 0.34
power of velocity. Michel and Toussaint (1977)
carried out another series of indentation tests on
fresh-water ice at —10°C. The indentation velocity
U varied from 5.84 X 1077 m/s to 4.65 X 107 m/s,
and the D/t ratio from 0.25 to 4. In Fig. 3, the solid
triangular symbols represent the relation between the
maximum values of P/¢Dt and UjpyD, for each of
their tests.

The next step is to compare the observed relation
between P/opDt and U/¢yD in indentation tests with
the relation between stress and strain rate observed
in uniaxial tests. Most authors report the results of
“strength” tests at constant strain rate rather than
creep tests at constant stress, but in a test at constant
strain rate the sample will creep at the rate at which
its deformation matches the deformation imposed by
the machine, and in that sense a distinction between
creep tests and strength tests for a creeping material
is an artificial one. It follows that a plot of strength
against strain rate in strength tests should be the same
as a plot of stress against strain rate in creep tests.
Gold (1977) pointed out that this was observed
experimentally. The open symbols in Fig. 3 are data
points for the relation between stress- and strain-rate
in uniaxial compression, from Gold and Krausz
(1971), Michel and Paradis (1976) and Gold (1977).
All these tests were on columnar-grained S2 ice.
The data reported by Michel and Paradis were
measured at —10°C, at the same temperature and with
the same type of ice used in the indentation experi-
ments by Michel and Toussaint. Gold and Krausz’
tests were on St. Lawrence River ice at —9.5°C.

If the theoretical model were exact, and the ideali-
zation were a complete description of the material
behaviour, the solid symbols representing the indenta-
tion tests ought to lie on the same curve as the open
symbols representing the creep data. It can be seen
that the observations are consistent with this. The
agreement is best at low strain rates. At straight rates
above 3 X 1075 571 the indentation tests tend to give
lower stresses than the creep tests at the same strain
rates. The most likely explanation for this is that
since deformation under the indentor is non-uniform,
that the most severely-strained sections of the ice

have strain rates markedly higher than U/¢yD. When
these local strain rates extend about 107 s™*, the ice
begings to fracture locally, and this effect modifies
the stress field and lowers the load. Spalling and
radial cracking will also be present.

The agreement turns out to extend to surprisingly
large strain rates, beyond the level at which fracture
becomes the dominant mechanism. This is consistent
with the observation of Michel and Toussaint (1977)
and Ralston (1979) that one can construct a “uni-
versal” curve, covering both the creep and fracture
regime, for indentation and creep data.

PRIMARY CREEP

The load predicted by eqn. (20) is not
immediately felt by the structure. On initial contact
the ice sheet responds elastically, and then primary
creep strains develop and stress redistribution takes
place before the steady state is reached. In ice,
primary creep strains are much greater than the initial
elastic strains at a given level of stress, so it is the
accumulation of primary creep strain in the structure
that determines the rate of increase of load. The
reference-stress technique can be extended to include
primary creep through the assumption of time
hardening. This leads to a prediction of the load after
a time 7 given by

P = ¢DtF, [%, 'rjl (24)

where F,;[x,7| is the uniaxial stress after a time ¢
in a test conducted at constant strain rate x.

Ashby and Duval (1982) have suggested that at a
constant strain rate €, there is a unique relationship
between the dimensionless variables

0 = ofog, (25)
and
7= 16,E0g , (26)

where o4 is the steady-state stress corresponding
to €,

Ogs = Go(€a/€0)'" . (27)
If time hardening is assumed then the relationship is

"= B:r‘—2/365/3exp(_(c7”.6’2)1/3)+63’ (28)




where B is 37 and C is 1.6 X 1072 for pure ice.
Equation (2) is plotted in Fig.4. Equation (1)
suggests that this relationship is valid for the indenta-
tion problem when the dimensionless variables are
defined as

g = P/Pg , 29)
and
T = UttE[Pg ) . (30)

The load is 80% of the steady-state value when 7=85.

I PP
08+ ./-""_---__ ]
06+
04 +
|
02
0 T T T
50 100 150
%

Fig. 4. Relation between dimensionless time and stress ratio.

CONCLUSION

Reference-stress theory provides a rational and
straight-forward method for the calculation of ice
forces in the creep mode. The method can be used to
predict ice forces directly from measurements of the
stress strain-rate relation, and is not limited to any
particular functional relationship between stress and
strain rate, Comparison with measurements in the
laboratory encourages confidence in the application
of the theory. The next step is to test the theory
against large-scale tests and measurements on full-
scale structures.
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APPENDIX: THE ELASTIC SOLUTION TO THE
EDGE-INDENTATION PROBLEM

Texts on elasticity report a solution to the two-
dimensional problem of normal indentation of an
elastic half-space by a rigid plane indentor (Fig. 1).
Sneddon (1951) gives the force corresponding to an
indentor displacement A as £Aw/2(1-v*)log 2. How-
ever, the displacement field corresponding to this
solution increases indefinitely with distance
from the indentor, because of the presence of
logarithmic terms: the displacement component u

in the x-direction on the surface x = 0, for instance, is

A iny<DJ2,

- Al
u= log(8y?/D?* -1 (
P rye 8(8y°/ )

iny >D/2 .
2 log 2

It follows that the relative displacement between
the indentor and the far field is infinite. Hertz recog-
nized this problem (Johnson, 1982), and he and
Sadowsky both saw that it raised difficulties in appli-
cations.

A simple analysis emphasises the qualitative differ-
ence between the elastic (n=1) and creep (n>1)
indentation problems in two dimensions. In the far
field, at a distance r (large by comparison with the
indentor contact diameter) each stress component
must be proportional to r™'. It follows from (3)
that each strain-rate component must be proportional
to r”, and therefore that the relative velocity
between the indentor and a point at a large distance
R from the indentor must include a term of the form
er""dr. If n is greater than 1, the integral behaves
quite satisfactorily, and remains finite as R tends to
infinity. If n equals 1, however, the integral includes
a log R term, and diverges as R tends to infinity.
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