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Abstract—Based on micro-mechanical considerations, a phenomenological constitutive law is proposed
for the steady creep of polycrystalline materials undergoing creep-constrained grain boundary cavitation.
Singular stress and strain-rate fiefds at the tip of a stationary, plane strain crack are obtained revealing
the role of cavitation on ncar-tip behavior.

Résumé-—Nous proposons une loi phénoménologique constitutive, reposant sur des considérations
micro-meécaniques, pour le fluage stationnaire de matériaux polycristalling présentant une cavitation
intergranulaire sous contraite. Nous avons obtenu des champs de contrainte et de vitesse de déeformation
singuliers & l'extrémité d’une fissure plane stationnaire, ce qui révele le réle de la cavitation sur le
comportement du voisinage de l'extrémité de la fissure.

Zusammenlassung—Ausgehend von mikromechanischen Betrachtungen wird ein phdnomenologisches
Grundgesetz flr das stationdre Kriechen eines polykristallinen Materials, in welchem sich kriechbedingt
Hohlrdume an Korngrenzen bilden, entwickelt. Singuldre Spannungsfelder und Felder der Ver-
formungsgeschwindigkeit werden flr die Spitze eines stationdren ebenen Risses berechnet. Diese Felder
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weisen auf den EinfluB der Hohlraumbildung auf das Verhalten in der Ndhe der RiB3spitze hin.

INTRODUCTION

At high temperatures grain boundary cavitation is
one of the primary mechanisms of deformation and
failure in polycrystalline metals and ceramics. Recent
work has served to clarify nucleation and growth
processes associated with grain boundary voids [1, 2].
Second phase particles in the grain boundary inter-
fere with sliding and nucleate voids early in the
deformation history [1]. Whether these voids then
grow or collapse depends on many factors including
the temperature and local stress state at the bound-
ary. Il the voids do grow, they can do so by one of
several mechanisms including difTusion [3), coupled
diffusion and power-law creep [4] and power-law
creep [5].

Only at high overall stresses will the growth mech-
anism predominately be due to power-law creep. This
mechanism results in short lifetimes but extensive
ductility, not unlike that associated with low tem-
perature, time-independent void growth. In the range
of low to moderate stresses, the lifetimes of high
temperature alloys 1s long and the growth mechanism
is predominately a diffusive one as evidenced by the
low ductility which 1s usually observed. The voids
grow and link up to form grain boundary cracks
before extensive creep deformation of the grains can
occur. An important feature of this process which has
only recently been noted is that at sufficiently low
overall stress the rate of void growth is constrained,

or controlled, by the creep deformation of the grains,
even though the local void growth mechanism is
diffusive [6,7]. The local stress driving diffusive
growth of the many voids on a given grain boundary
facet drops to a low level relative to the overall stress
such that the net dilatation-rate of the voids is
compatible with the slow creep distortion-rate of the
surrounding grains. In other words, voiding along a
facet cannot occur without an accommodating defor-
mation of the surrounding grains. If these grains are
deforming slowly enough, wvoid growth has no
difficulty keeping up and the rate of growth is deter-
mined by the creep of the grains. These notions are
consistent with the experimental rule, known as the
Monkman-Grant relation, for rupture life-times un-
der constant stress loadings. It states that the time to
failure for a polycrystalline metal at a given tem-
perature varies roughly inversely with the steady-
state, or minimum, creep-rate over the range of stress
levels of practical interest. That is, the lifetime cor-
relates with the overall creep behavior and not with
the linear stress dependence expected from the
diffusive process.

In this paper a multiaxial constitutive relation is
proposed for steady-state creep of a polycrystalline
material undergoing grain boundary cavitation. It
will be assumed that the overall stresses are in the
range such that the void growth is creep-constrained
in the manner described above. Material constants
characterizing diffusion do pot appear explicitly in
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this limiting creep-constrained condition. Following
presentation of the constitutive law, we apply it to
study the influence of cavitation in the stress and
strain-rate fields at the tip of a macroscopic crack.
Detailed results are presented for a stationary crack
under conditions of plane strain and Mode I.

CONSTITUTIVE LAW FOR A POLYCRYSTALLINE
MATERIAL UNDERGOING CREEP-CONSTRAINED
GRAIN BOUNDARY CAVITATION

Attention is focused on the major portion of the
lifetime of the polycrystal prior to the tertiary period
when the cavitating facets start to link up leading to
final rupture. The overall stress history is restricted to
be proportional so that, in particular, the direction of
the maximum principal stress does not change. It is
assumed that only facets which are normal to (or
nearly normal to) the maximum principal tensile
stress direction suffer cavitation. This appears to be
a reasonable assumption as evidenced by experi-
mental observations of a number of investigators
(e.g. [8, 9]). Furthermore, since the voids distributed
over any such facet are assumed to have relaxed the
traction acting across the facet to a low level relative
to the overall stress, the net dilatation-rate from the
facet can be estimated by modeling the facet as a
traction-free micro-crack, as in the limiting case of
creep-constraint considered in [7]. The macroscopic,
or overall, steady creep-rate of the material is thus
estimated from a model material which deforms
according to power-law creep and which contains
micro-cracks aligned normal to the maximum prin-
cipal stress direction.

For such a material there exists a potential func-
tion of the overall stress, @ (¢ ), such that the overall
strain-rate is given by (see Appendix for background
theory)

. 0P
6= (1)

—
00

In the absence of micro-cracks the potential function

is taken to be
Ao 3 n+1
P =—"2 [ 2
o (2) @

where o, = (35,5,/2)'? is the effective stress and s is
the stress deviator. Via (1) this leads to the simple
power-law relation for steady creep

P T A 3
) g,/ O, - ay ®)

where the second relation holds in simple tension o.
Here « and o, are a reference strain-rate and stress,
respectively. It is assumed that the contribution from
grain boundary sliding is included in equation (2), as
analyzed for example in [10].
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Each cavitating facet will be modeled as a penny-
shaped micro-crack aligned normal to the direction
of the maximum principal tensile stress S. An approx-
imate analytic solution for an isolated penny-shaped
crack in the power-law material (3) has been given in
[11] for the case of general remote stress states which
are axisymmetric with respect to the axis of the crack.
With ¢,,=S and g, =ag,; =T characterizing the
remote stress state where x, is aligned with the axis
of the crack, the rate of increase of the volume of the
crack is given by [11]

5 3 =12 n
V=8aa3(l+—> (“—) &) @)
n a,) 0.

where a is the radius of the crack and ¢, =S —T
when § > 7. The ratio S/o, can be regarded as a
measure of the triaxiality of the remote stress state.
It equals unity for remote uniaxial tension perpendic-
ular to the crack and is related to the ratio of remote
mean stress, g, = 04/3, to effective stress by

S o, 2
Iny 2 )
g, 3

O,

Highly accurate numerical calculations of V are
presented in [11]. The analytical formula (4) was
found to be accurate to within 1% for S/a, < 2 when
n <5, and it is exact when n = 1. For triaxialities
above S/g, = 3, equation (4) underestimates V when
n >1. This can be seen in Fig. | where the ratio
V(S, T)/V(S,0) is plotted as a function of ¢,/S.
Here, V' (S, T) is the volume-rate for the crack subject
to both S and 7 and ¥V (S, 0) denotes the rate under
remote uniaxial tension S. The dashed curves are
derived from (4) while the solid line curves are from
the more accurate numerical results in [11]. Formula
{4) incorrectly predicts ¥ = 0 for pure remote hydro-
static tension (S =T, g, =0) when n > [. However,
as seen in Fig. 1, for loadings close to hydrostatic
tension with S~ 7 so that ¢,/S«1 the volume

/
Z /I/ 1
0 2 4 6 8 1.0
/s

0

Fig. |. Penny-shaped crack in an infinite block of power-law

crecping material. Ratio of dilatation-rate under triaxial

stressing (g, = S, 0, =03, = 7, with S > T) to that under

uniaxial stressing (g, = S, 0y = 04, = 0). Solid line curves

from accurate numerical results in [11]; dashed line curves
from equation (4).
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growth-rate is indeed much smaller than the corre-
sponding rate for a crack subject to a uniaxial tension
S when n > 3. Nevertheless, (4) will underestimate ¥
at very high triaxialities, and the implication of this
for the dilatation field at a macroscopic crack tip will
be discussed later.

The potential function for the strain-rate con-
tribution of an isolated penny-shaped crack in the
power-law material is

3\ 12 ) atl/ e\2
b, = 4aooa3<l + —) <2> <~> (6)
n 0o o,

where it is again understood that the axis of the crack
lies along the direction of the maximum principal
stress S. The strain-rate quantity é9_/do; represents
the contribution from a single, non-interacting crack
to the overall strain-rate (see the Appendix for
details). In particular, 0900, gives the volume-
rate (4).

If the spacing between the cavitating facets (mod-
eled as micro-cracks of radius a) is sufficiently great
their interaction becomes unimportant. Then the
total potential of the material with aligned micro-
cracks is a superposition of equation (2) and con-
tributions of the form (6). That is, the potential
function can be written as

B oG, g, n+ _‘E 2
el O] S

For widely spaced cavitating facets the factor p
follows immediately from (6) as

p=4aN(n+1)(1+3/n)'" )

where N is the number of cavitating facets per unit
volume. However, we prefer to leave p as a free
parameter whose role will be revealed below by the
expression for the strain-rate. Using the connection
€; =09 /0oy, one finds

e
g=al =) <z2
ay/ (20,
Jn—Ds, (SY 2 S
AR Y ol 2 m, 9
+pl:2(n+l)oe o, +n+loem” ©)

where m is the tensor whose components in the
principal axes of stress are

(10)

where §, is the Kronecker delta and K denotes the
index associated with the direction aligned with the
maximum principal (tensile) stress S.

For uniaxial tension in the I-direction with
6, =g, =S, the strain-rate and dilatation-rate from
equation (9) are

- Sy , S\ 2p

Thus, p/(1 +p) can be identified as the relative

m; =00, (nosum on K)

(11)
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fraction of the tensile strain-rate due to grain-
boundary cavitation in uniaxial tension. From (11)

Gw_ 2

én n+ll+p

(12)

and, for example, p could be regarded as a parameter
to be chosen to fit steady-state data according to
equation (12) in the range of creep-constrained cavi-
tation. Data in [8] for the cavitation-rate in uniaxial
tension does indeed suggest a constant ratio of &,/¢;,,
and values of p on the order of unity result when
equation (12) is used to fit that data. Values of p of
this magnitude are consistent with a moderately low
density of cavitating facets, although interaction be-
tween facets may make the dilute estimate (8) some-
what questionable. Even so, it can be hoped that the
potential function (7) and the strain-rate expression
(9) which derives from it have approximate validity
when p is chosen to reproduce selected experimental
data.

The form of the relation between strain-rate and
stress given by equation (9) is quite different from the
well-known phenomenological damage theory due to
Kachanov (e.g. [12]). In that theory the damage
parameter increases in time in accord with a pre-
scribed equation, and under constant stress condi-
tions the strain-rate increases with increasing dam-
age. The description is inherently non-steady under
constant stress. There is no provision in the Kach-
anov model for an overall dilatational contribution
to the strain-rate, nor is there any effect on the
strain-rate of the hydrostatic component of stress.
The adequacy of the functional form of the Kach-
anov description as applied to creep-constrained cav-
itation has been questioned in [2] on the basis of
micro-mechanical considerations similar to those dis-
cussed in the Introduction. Furthermore, experi-
mental work (see [8]) has suggested that both a
constant dilatation-rate and a hydrostatic stress de-
pendence are associated with secondary, or steady,
creep behavior under constant stressing in the regime
of creep-constrained grain boundary cavitation.

In the present model p reflects the density of
cavitating facets but not the microscopic damage per
se. Thus, if the density of cavitating facets is fixed
during some period of constant stressing, p will not
change and the strain-rate will be steady even though
microscopic damage is accumulating in the sense that
the voids are enlarging. This behavior is a con-
sequence of creep-constrained deformation and
qualitatively, at least, is consistent with the notions
discussed in [2, 7, 8]. The hydrostatic component of
stress does affect the strain-rate. For example, if a
hydrostatic tension p is superimposed on a uniaxial
stress o,, the strain-rate from (9) is

. o\ p n—1\p
€||=d<;0> {I+p<[+a>[l+<n—+l>g—e:|} (13)
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The contribution to the strain-rate from the cavi-
tating facets in equation (9) includes a deviatoric part
as well as a dilatant component. In fact, the devi-
atoric contribution is substantially larger than the
dilatant component when the exponent » is 3 or more
and S/o, > . For example, in simple tension the ratio
of the dilatant to the uniaxial strain-rate con-
tributions from the cavitating facets is 2/(n + 1), and
this ratio becomes even smaller under higher levels of
triaxiality. The significance of the relatively large
deviatoric contribution to the strain-rate will be
brought out in the discussion of the crack tip fields.

The material characterized by equation (9) is an
isotropic, power-law creeping solid. The strain-rate is
a homogeneous function of degree » in the stresses.
For n =1, (9) reduces to

(14)

While this relation is homogeneous of degree one, it
is not linear in the stresses since neither S nor my is
a linear function of the stress components.

Finally, we emphasize that equations (4) and (6)
were derived in [11] under conditions of axisymmetric
stressing (i.e. oy, = S and 0y, = 04, = T'). Here we will
assume that these formulas (and also (7) and (9)
which follow from them) apply, at least approxi-
mately, under general stressing where the stresses are
o, = S with ¢y, # 0y, In principal axes, where S is
again the maximum principal stress which is perpen-
dicular to the micro-crack. For n =1, equations (4)
and (6) are exact, but for n > | the accuracy of these
formulas has not been established for the more
general stress conditions.

é; = (a/og) {355+ p Sm;}.

CRACK-TIP FIELDS FOR A MATERIAL
UNDERGOING CREEP-CONSTRAINED
GRAIN BOUNDARY CAVITATION

We consider a stationary macroscopic crack under
steady creeping conditions. The crack is taken to lie
along the negative x, axis and, for the moment, either
plane stress or plane strain is assumed to prevail. The
creep zone is asumed to be very large compared to the
grain size and a continuum description of the ma-
terial 1s employed based on equation (9). Under
steady creep conditions the stresses at each point in
the crack tip field do not vary with time. The
orientation of the principal stress axes at any point
also remains fixed. However the distribution of this
orientation, and thus that of thc cavitating facets, is
not known in advance but is inherently an unknown
element of the problem.

We will assume that in the region of concern near
the crack tip the density of cavitating facets is ap-
proximately uniform so that p can be taken to be
independent of position. (Of course, the rate of
cavitation will be a strong function of position.) With
constant p the material meets the conditions required
for application of the C*-integral to the macroscopic
crack problem. This theory is simply the conversion
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to a steadily creeping material of J-integral theory
for cracks in time-independent deformation theory
materials. The line integral
c* :'[ (Wn, — o, nu;,)ds (15)
r
is independent of path for all contours I' encircling
the crack tip such as that shown in Fig. 2. Here n is

the outward unit normal to the contour, u is the
velocity, and

W=JA o, de;. (16)
0

For any power-law material W, @ and the dissipation
rate are related by

41
%Q=G7—)W=M+U¢

(7
so that an expression for W in terms of the stresses
follows immediately from equation (7).

The pure-power character of the constitutive law
(9) permits a description of the crack-tip singularity
fields in a separated form similar to the HRR-fields
[13,14]. With r and 0 as planar polar coordinates
centered at the crack tip, the fields have the form

C* fn+1)
7T Go(aoolr> G;(6,n,p) (18)
) C* \ln+b .
R (aoo Ir) “mp) )

where &; and ¢, depend on the mode of loading and
on whether plane strain or plane stress pertains, as
does the normalizing factor / =1(n,p). The repre-
sentation is made definite when the #-variations are
normalized in some manner. We will retain the
normalization used in previous work [13] and require
the maximum value of &, to be unity for 6 on the
interval (0, 2z). With the normalization in force, C*
plays the role of the amplitude of the singularity
fields; it cannot be determined by the asymptotic
near-tip analysis since it depends on the full geometry
of the cracked body and on the external loading.

Fig. 2. Conventions for macroscopic crack analysis.
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In the problem analyzed below the maximum
principal stress lies in the (x,,x,)-plane and its distri-
bution has the same form as equation (18), i.c.

C* Hn+1) o~
00< —) S(6,n,p).

ooy lr

S= (20)
The angle which the maximum principal stress direc-
tion makes with the radial direction is denoted by
B(0,n,p) so that 6 + f is the angle between the
principal stress direction and the x,-axis, as depicted
in Fig. 2. By equation (9), the f-variations of the
strain-rates and stresses are related by

3n—-13,/8\z 2 §
pl2n= &5V 2 S N o
2(n + 1) 6,\ 4, n+14,
Substitution of equations (18), (19) and a similar
expression for u into (15) gives the following ex-
pression for /in terms of the normalized #-variations

b noo_ L L
1 :J {n T 0,6 — a,-/n_.,-u,-‘,}d().

With p = 0, the fields reduce to the incompressibie
HRR-fields. However, when p #0 the cavitating
facets make both deviatoric and dilatant con-
tributions to the strain-rate, altering the entire crack
tip field. For the remainder of this section we restrict
attention to results for Mode I cracks under plane
strain conditions (€3 = 0). In plane strain it is readily
shown that s;; =0 and that the maximum principal
stress S lies in the (x,,x,)-plane so that my; =0.

We will start by presenting the results for the
limiting case in which n = 1. Polycrystalline creep
with n = | 1s usually associated with a diffusive mode
of deformation. In metals such a mode will generally
only occur at extremely low stresses, but in ceramics
such modes are usually the dominant ones even at
relatively high stress. With p =0 and n =1, the
solution is the classical (incompressible) linear elastic
crack-tip field. The 0-variations of the stresses for this
field are

(22)

G, 5cosi0 —cos 30
Gog » =—— < 3c0sif +cos30
é 2/3 | sinlo +sin20

o

(23)

with &3, = (d,, + dy)/2. For 8 in the range (0, )

~ [
G, =sinf, S = /.3_»(2 cos 10 + sin 0)

v and B=Lm—0). (4)
The maximum value of S is 3/2 attained at 6 = 60°
with £ = 30°, corresponding to the principal stress

being directed in the x,-direction. By contrast, ahead
of the crack on § =0, § = 2/./3 with 8 = 45°, which
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must be interpreted as a limiting condition for 6 — 0
since g, = gy wWith ¢, =0 on 8 = 0.

The field for n =1 with p >0 turns out to be
exceptionally simple in that the #-variations of the
stresses are independent of p. The strain-rates derived
from equation (19) and (21) with p > 0 in terms of the
above @-variations of the stresses in (23) and (24)
satisfy compatibility. A transparent reason why this
should be so has not been found; that it is true,
however, has been established by direct substitution
into the compatibility equation. Thus, equation (21)
with (23) and (24) comprise the solution for all p
when n = 1. Since &, are independent of p and since
u; and €, are linear in p, /in (22) must also be finear
in p. We find

[y (28
T 3 a5 )P

=628+49.17p (forn=1). (25)

The distribution of the dilatation in the near-tip field
from equations (19), (21) and (24) is

) ap( C*
€ = =
V3 agylr

At a given r-value, the maximum dilatation rate
occurs at 6 = 60°.

Under certain circumstances, this simple solution
may also have application to brittle elastic solids
which undergo micro-cracking near the tip of a
macroscopic crack. If the micro-cracks tend to align
themselves normal to the maximum principal stress
direction, then a time-dependent constitutive relation
analogous to equation (l4) should be applicable,
although the assumption of a uniform density of such
cracks may not be appropriate. Elastic com-
pressibility in such a relation does not complicate the
simplicity of the solution.

For n > 1 it is no longer true that the §-variations
of the stresses are independent of p. The numerical
method used to solve for the §-variations is similar to
that used in the earlier analysis of the HRR-fields [13]
and therefore it is unnecessary to repeat details of the
method here.

The 6-variations of the stresses are shown in
Fig. 3 for n =3 and 5. The solid line curves are for
p =0 and these reproduce the corresponding HRR
results in [13]. The dashed line curves were computed
with p = | corresponding to a fairly substantial con-
tribution from grain boundary cavitation, as dis-
cussed in connection with equation (11). Curves of §
and £ are shown in Fig. 4 for the same sets of values
of nand p. It can be seen that the f-variations of the
stresses are only weakly dependent on p. As in the
case of n =1, the main effect of p on the stresses
arises through the normalizing factor /. Although 7is
not strictly linear in p when n > 1, we found that the
numerical values for 7 could be well approximated by

I(n,p)=I(n)+ pl(n) (27)

172
) (2cosi0 +sin6),0< 0 <n. (26)
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Fig. 3. f-variations of the stress components of the singularity field.
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Fig. 4. 0-variations of the maximum principal stress of the singularity field together with its orientation.

where values of 7,(n) and 7,(n) are given in Table I.
The values for 7, coincide with those of the HRR-
field; the approximation (27) is accurate to within a
few per cent for p <2.

The 0-variations of the strain-rates are shown for
n =31 Fig. 5 and for n =5 in Fig. 6. These have
been determined using equation (21) with the vari-
ations ¢, for the values of p shown. (We note,
however, that a reasonable approximation for ¢
could be obtained using the HRR stress variations
(corresponding to p =0) in equation (21) since, as
previously emphasized, the p-dependence of the g, is
small.) Included in Figs 5 and 6 are the results for the
f-variations of the dilatation-rate, é,,, where from

(19)
) C* afln+1) L
€k = a( ) €k (28)
agyIr
and from (21)
. 20 . .
=—— " 'S 2
€xk n 1UL (29)

In the regime of creep-constrained cavitation being
considered here, the cavitation rate is greatest where
the creep-rate is greatest (i.e. where &, is greatest) and

this is reflected in the variation of &,,. Relatively little
dilatation occurs directly ahead of the tip (except
when n = 1), even though this is the region of high
stress triaxiality, because the overall creep-rate is low
there. As mentioned in the previous section, the
present constitutive model underestimates the
dilatation-rate in regions of high triaxiality when
n > 1. The creep-rate is so low in the region of high
triaxiality ahead of the crack that this inadequacy of
the model is not expected to significantly affect the
predictions.

Contours of constant dilatation-rate are shown in
Fig. 7. In this figure a nondimensional, scaled polar
coordinate R (f) has been used where for a constant
value of €,

R (n + l)éM (r + 1)/ 1001
= ~ — Ir
2ap c*

Table 1. Values of [, and

(30)

1
L
n=1 628 9.7
n=3 550 133
n=5 501 124
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Fig. 5. f-variations of the strain-rate components of the singularity field for » =3 with p =0 and 1.

so that, from equations (28) and (29), where
R(0)= (" ' §)“+ " This scaling provides all con- S ~ L
tours of constant dilatation-rate in the zone domi- D =66/l =60 [1+p (S/6,)7/1. (32)
nated by the singularity fields. It can be noted that
R (0) is only weakly dependent on p forn =3 and 5,
while it is independent of p for n = 1.

It is also revealing to examine the distribution of
the dissipation-rate near the crack tip. From equa-
tions (18), (19) and (21),

Plots of D as a function of # are shown in Fig. 8
where it is seen that D is only weakly dependent on
both n and p, with the strongest dependence showing
up in the limit » = 1. The distribution of dissipation
near a crack tip at a given C*-level is therefore
relatively insensitive to whether or not cavitation
is taking place and to the material parameters in

. _Cr s
a,-e,-j=TD(9,n,P) G general.

— S = 1 | ! - I
0 30° 60° 90° 120° 150° 180° 0° 30° 60° 90° 120° 150° 180°
[ 8

Fig. 6. O-variations of the strain-rate components of the singularity field for n =5 with p =0 and 1.

n=1
(olt p)

5 10

Fig. 7. Contours of constant dilatation-rate in the singularity field. The scaled, nondimensional variable
R (#) is defined in equation (30).
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Fig. 8. f-varations of the dissipation-rate in the singularity field.

CONCLUDING REMARKS

The asymptotic analysis of the crack tip fields has
been idealized in several respects including the as-
sumptions (i) that creep-constrained grain boundary
cavitation pertains, (ii) that the density of cavitating
facets is uniform near the tip, and (1) that transient,
or nonsteady, deformation can be ignored. In addi-
tion, attention has been restricted to a stationary
macroscopic crack. In spite of these limitations,
certain features revealed by the results are likely to
remain unchanged by further refinements. In particu-
lar, for n > 3, the distribution of stresses and strain-
rates near the tip remain relatively unchanged by the
occurrence of cavitation, except that (for a given
C*-level) the stress level drops and the strain-rate
level increases such that essentially the same distribu-
tion of the dissipation-rate is maintained. It is to be
expected that there will be a fall off in the density of
cavitating facets with distance from the tip, and far
enough from the tip it is likely that essentially no
voids will be nucleated. Under these circumstances, it
is of course not true that the line integral (15) defining
C* remains path-independent. But, C* as used in
equations (18) and (19) may still retain its role as the
amplitude of the near-tip fields if it is defined by the
line integral using a near-tip contour. It is possible
that the “far field” value of the line integral may not
be too different from its near-tip value. (This would
be consistent with the observation that the distribu-
tion of the dissipation-rate does not appear to be
much influenced by the level of cavitation.) If so,
analyses which ignore the effects of cavitation may be
used to estimate the near-tip C*, but this can only be
ascertained by additional numerical studies.

The steady-state analysis carried out here ignores
any elastic accommodation of grain boundary cavi-
tation which is likely to occur in the early transient
response of the material. Since the stresses ahead of
the crack tip start out relatively high and then relax
to lower values, it is possible that significant cavi-
tation on facets directly ahead of the tip may occur
before steady-state conditions are achieved. Never-
theless, the cavitation-rate on such facets should be
much reduced as steady conditions are approached if,
indeed, creep-constrained cavitation pertains.

Finally, the present results can be used to gain
some insight into damage calculations such as those
in [15, 16] which use stress distributions determined
without accounting for the effects of cavitation to
estimate void accumulation near a crack tip. For
example, suppose one used the stresses from the
HRR-fields (the present solution with p = 0) to esti-
mate the dilatation-rate for a material with nonzero
p obeying the constitutive law equation (9). Substi-
tution of the HRR-stresses into (9) and evaluation of
€, gives precisely the form of the correct result (28)
but with I replaced by I, and with &, and § of the
HRR-field in equation (29). The #-variations of the
HRR-stresses are not significantly different than
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those for nonzero p, as has already been discussed.
However, 7 is a strong function of p, and its replace-
ment by /, means that the approximate calculation
substantially overestimates the dilatation-rate at any
given point. For n =3 and p =1, the approximate
dilatation-rate is high by a factor of three. As empha-
sized in the discussion of the constitutive law, this is
not so much a consequence of the dilatation, per se,
but is due to the relatively large deviatoric strain-rate
contribution from the cavitating facets and its effect
on lowering the stress level near the tip.
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APPENDIX

Macroscopic behavior of a steadily creeping body with micro-
cracks

As a representative macroscopic volume element, con-
sider a body with many traction-free micro-cracks, whose
orientations are for the moment assumed to be fixed inde-
pendently of the overall stress. The body is assumed to be
deforming under steady-state creep conditions. In this Ap-
pendix t and 5 will denote local stress and strain-rate while
o and ¢ will continue to signify overall, or macroscopic,
stress and strain-rate. The steady creep law characterizing
the material is specified by potential functions w and ¢ of
the local strain-rate and stress, respectively, such that

T, =0w/dn, and 1, =0¢/ot; (AD)
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with

= w+ ¢ (A2)

The volume of the macroscopic volume element is ¥ and
its outer surface is denoted by 4. Following a standard
approach in the theory of heterogeneous materials, let
“uniform tractions” o1, be prescribed over 4 where » is the
outward unit normal to 4 and o, is independent of position.
Define the overall strain-rate resulting from these tractions
as

(A3)

4

1
€= V“J E(L':,-nj+ajn,-)d,4
A
where u is the local displacement-rate. Next note that

é,do, = V"J undoydA = V"J un,dr, dA
4 a

:V"J iyde,dV = V"J dgdv (A4)
v v

where use has been made of the traction condition,
Tm = o, on A, the principal of virtual work, and the
condition that the micro-cracks are traction-free. It follows
from (A4) that the macroscopic potential function

& (o) = V—'J ddv

provides the overall strain rate according to

¢, = adda, (AS)

A dissipation functional of the displacement-rate for the

body with prescribed tractions o,7; on A is defined in

analogy with the potential energy functional for an elastic

solid as
P =J de—J a,nudA,
v A

From the fact that the actual fields in the body satisfy

Ja,-jnjzl,-dA =J 1 dV
r v

and the connection (A2), it follows that

P=—Vd()

(A6)

(AT)

when evaluated in terms of the solution for the micro-
cracked volume element.

Now it is imagined that all the micro-cracks are penny-
shaped cracks of radius a so that under constant o, from
(A7),

dpP do
—=—V— (A8)
du da
When the micro-cracks are sufficiently far apart, dP/da can
be estimated using results for an isolated crack in an infinite
body under remote stress o. Based on a penny-shaped crack
in an infinite block of power-law material (2), the estimate
of dP/da from [11] is

dp 3 —1/2 g, a+l S 2
— = ~I2NVaaoa2<l +7> <—‘> <—> (A9)
da n g, a,

where N is the number of cracks per unit volume. Now the
cracks are all assumed to be aligned normal to the direction
of the maximum principal stress S, as discussed in the body
of the paper. Integrating (A8) with respect to a using (A9)
and noting that @ is given by (2) when a =0, we obtain &
as given by (7) along with (8).
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It is only intended that the constitutive relation be
applied under conditions in which the direction of the
maximum principal stress does not change so that the
orientation of the cavitating facets remains fixed. Under this
restriction on the stresses, it is readily shown that
é; = 0® /0 leads to the strain-rate expression (9). However,
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we further note that this same strain-rate expression is also
obtained from ¢, = 3¢ /0o, when no restriction is placed on
the stresses. Consequently, the restriction to stress histories
with fixed (or nearly fixed) maximum principal stress direc-
tion is based on physical, but not mathematical, consid-
erations.




