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Summary

Deformation of an isolated void in an infinite block of linearly or nonlinearly viscous
material is studied for remote axisymmetric stressing. The material is isotropic and
incompressible with a power-law dependence of strain-rate on stress. Included in the family
of materials are a linearly viscous solid and a rigid—perfectly plastic solid at the extreme limit
of nonlinearity. Evolution of the void shape and size is analyzed in detail for voids starting as
spheres in the linearly viscous material under all possible combinations of remote
axisymmetric stressing. Asymptotic, or self-similar, shapes towards which the voids evolve
are exhibited as are the associated rates of growth or collapse. Under conditions of high
remote triaxial stressing the growth-rate of the asymptotic void is found to be identical to that
of a spherical void with the same volume. The influence of nonlinearity on the growth-rate
and deformation of a spherical void is investigated. Under high triaxiality conditions the
behavior of a void in the nonlinearly viscous or rigid—perfectly plastic material is qualitatively
different from that of a void in a linearly viscous material. In particular, a void in a nonlinear
block undergoing tensile straining with sufficiently large superimposed remote hydrostatic
tension grows more rapidly in directions perpendicular to the straining direction than along
it and becomes significantly oblate. Asymptotic growth-rates are estimated numerically for
the nonlinear materials. The results for the isolated void are used in a simple, approximate
way to investigate the roles of material nonlinearity and stressing conditions on the strain
required for ductile failure by void growth and coalescence.

I. Introduction

The roles of material nonlinearity and stress state on void growth or collapse in viscous
solids are studied in this article. The materials considered are isotropic and incompressible
with power-law dependence of strain-rate on stress. Under simple tension o, the associated
strain-rate ¢ is

¢ = &o(0/0)" (1.1)
where &, and o, are reference strain-rate and stress quantities. The hardening exponent n
ranges from unity to infinity. For multiaxial stress states g;;, (1.1) is generalized to
13
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.3, -
&ij = 520(0e/00)" '5i/00, (12)

where s;; is the stress deviator, g, = (3s;;5,;/2)" * is the effective stress, and ¢, is the strain-rate.
For convenience, (1.2) will be used throughout in the more compact form
1 n—-1

éij = ﬂ()'e Sij (13)

where 7 is a viscosity-like parameter defined by
n =05/(&). (14)

Included in this family of materials is a linear Newtonian viscous solid with n = 1 and a
rigid—perfectly plastic solid with n — oo. Hill (1956) singled out the family of materials (1.3) as
being particularly appropriate for the investigation of a wide range of material behaviors—a
viewpoint which is adopted here.

The study presented below is restricted to an investigation of the growth or collapse of an
isolated void in an infinite block of material. Furthermore, the void is axisymmetric with
respect to the x;-axis and the stresses remote from the void are also axisymmetric with respect
to this axis. The following notation for the nonzero remote stresses will be used throughout:

ofi=05=T1, o33 =3S. (1.5)

In addition, it is useful to introduce the notation

1 1
on =508 = 3(S+2T) (1.6)
for the remote mean stress, and to let :
6=5-T (1.7)
so that ¢ = |o|. The nonzero remote strain-rates are
£y = —20 = =285 =¢, (1.8)
where
1 1
L ey 19
=3 lo|" e (1.9)

Figure 1.1 displays this notation.

Om =3(5+2T)

FiG. 1.1. Axisymmetric void; remote stresses and strains.
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Sections 2 and 3 are devoted to the evolution of a void in the Newtonian viscous solid
(n = 1) under all possible combinations of S and 7. At the beginning of the deformation
history the void is taken to be spherical. Depending on the combination of S and T imposed
on the block, the void grows or collapses and its shape evolves towards an asymptotic shape
which can be characterized as a needle, cylinder, spheroid, or crack. These asymptotic shapes
are determined, as are their growth-rates.

Void behavior in the linearly viscous solid is used as a guide in carrying out the analysis of
void growth in the nonlinearly viscous solid. Voids with needle-like or cylinder-like shapes
are analyzed in Section 4, and the ranges of S and 7, for which these shapes are those
approached asymptotically by initially spherical voids, are determined. The results of
McClintock (1968) for the rigid—perfectly plastic solid are reproduced. Contact is also made
with Tracey’s (1971) results for cylindrical voids in power-hardening materials.

A detailed analysis of the growth-rate of a spherical void as it depends onnand on SandT
is presented in Section 5. The results presented required extensive numerical calculations, but
a simple formula derived in Section 6 gives a reasonably accurate approximation for the
growth-rate of the void when the remote mean stress exceeds the remote effective stress. In
the limit of a rigid—perfectly plastic solid this formula reduces to the Rice and Tracey (1969)
formula for high triaxiality conditions. )

Some surprising predictions for the deformation of the spherical void are discovered. At
high n with S > T, the void grows more rapidly perpendicular to the remote straining
direction than along it when g, is sufficiently large compared to ¢. A similar tendency was
found by Andersson (1977) for an initially spherical void in a finite cylindrical block with
boundary conditions chosen to model high triaxiality conditions at a crack tip. The paper
concludes in Section 7 with a brief study of ductile fracture by void growth based on the
solutions of Sections 2—6. Estimates of the influence of material nonlinearity and remote
stress state on the fracture strain are obtained.

2. Governing Equations for a Void in a Linearly Viscous Solid

An isolated ellipsoidal cavity in an infinite, linearly viscous solid will always remain an
ellipsoid under the action of a uniform stress state (constant or variable) at infinity, although
it may change its size and shape, and rotate. This fact follows from Eshelby’s (1957) paper,
and holds for all homogeneous linear relations

0ij= Lijutu (2.1)

between strain-rate and stress, including anisotropic ones. ( The Eshelby result was for linear

elasticity and small strains, but the extension to linearly viscous solids and arbitrary strains is

immediate,aslongas ¢; isconsidered to be the current velocity strain.) These results persist

for the two-dimensional problems of elliptical cavities in linearly viscous solids analyzed by

Berg (1962) and McClintock et al. (1966) in their early studies of void growth and coalescence.
Here we shall consider spheroids (prolate or oblate) of the form

(x1/b) + (x2/b)* + (x3/a)* = 1 22)

and study their evolution under the action of the axial and transverse stresses (1.5) lined up
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with the axes of the spheroid. We shall ultimately adopt the incompressible, isotropic relation

1

€= Esij

(2.3)
that follows from (1.3) for n = 1. It will be useful, initially, to use the compressible
relationship

. v .
aij = 2" <£ij+l——jakk6i‘i> (24)

and then let the viscous Poisson’s ratio v approach % at an appropriate point in the analysis.
Symmetry and isotropy imply that the cavity will not rotate,and so we address the problem of
calculating its shape and size change. In particular, we shall calculate the strain-rate é! in the
cavity in terms of S, 7, and #, and then, with

a/a=4%, and b/b=¢\, =&, (2.5)

we shall be able to study the evolution of the void geometry.
Hill (1965) defines the tensor Q relating the cavity strain-rate to the remote stresses ¢
according to

ai?io = Ql’jmn éﬁnn (26)

and shows that
Qijmn = Lijmn - Ll'jldsklmn (2-7)

where S is the Eshelby (1957) tensor. (Eshelby relates a “stress-free” transformation strain
eTin an ellipsoidal region of a homogeneous linear elastic material to the actual “constrained”
strain &° by £° = S&7.) In the present spheroidal cavity problem, with L defined by (2.4)and ¢®
by (1.5), we find

m 201+ . .

fr’_ = 3((1—__2—3)[(1 — 83333 — 281330853+ 2(1 = S350, = S111y —51122)8'11:|7 (2.8)
o 2 " ol
3—r7=§ (1 =S3333+ 811330853 — (1 + 285335, —=S1111 — S1122)80 | (2.9)

From Eshelby (1957),

8m(1 —v)S3333 = 3a%1,, + (1 =2v)I,,
87(1 —v)S33,, = 3b%1,, — (1 —2v)1,,
87(1 = )8, 33 = 3a%1,, — (1 = 2v)I,, (2.10)
8n(1 —v)S, 11 = 3b%1,, + (1 —2V)I,,
87(1 —v)S, 22 = 3b%1,, — (1 =2W)I,,

where, with 4 = a/b,
ﬁ =f=Ai(1—A%)"3{cos 'A—-A(l — AR i<,

2z (2.11)
= A(A2—1)7AA = 1) —cosh™'A), A>1,
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and

Ia = 47'[—211,,
Ly =[3(a* =61 Uy~ 1,),

I, = 4n(3a®)" ' =21, 212
I,=31,, =nb"?-3],/4.
Elimination of the components of S in (2.8) using (2.10) and (2.12) gives
1+
s+ =" an—e, | (2.13)
n(l—v) :
For the incompressible material (v = 1/2) this becomes
S+2T= 3n[2ﬂé’33+(4—2ﬂ)é’“} (2.14)
where f is defined in (2.11). Similarly, (2.9) reduces to |
§S-T= 3}7[0:&’33—011'2@:’“] (2.15)

in the incompressible limit where for all A = a/b
a=A2(i2-1)"138-2) (2.16)
Inverting (2.14) and (2.15) and noting (2.5), one finds

a  J[(6—5B+a)S+2(a—2p)T]
Ta™ 6242+ B(1 — i%)] @17

and

A —=28)S+2(x+ B)T]
6a[222+ Bl — 72)]

b
= 2.18
b (2.18)
For a given history of S and T, (2.17) and (2.18) govern the evolution of the size and shape of
the void. The evolution of the void can also be expressed in terms of the rate of change of its
aspect ratio 4 = a/b and the rate of change of its volume V = 4nab?/3. Since
A

,

(2.19)

ISR~
[ al s

it follows from (2.17) and (2.18) that

. _ A[2-p)S—2pT]

1= 222+ Bl = 5] (220

With starting aspect ratio 4, = ao/b, at time 1 = 0, (2.20) provides the time as a function of /.
as

r(f2a[242+ (1 —4%)B]
L i 221
n J;.O_A"?[O—BJS—MT] ‘ 220

MOS - B*
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assuming S and T do not vary with time. From

l./—‘—'1+2b. 2.22
V a b (222)

it also follows that

V A [Q+a—38)S+2aT
e = [ f: B) 20‘ ] ' (2.23)
14 2a[24% + B(1 —A%)]
Elimination of time in (2.23) in favor of 1 as the dependent variable using (2.20) gives

ln[l] 3 J“ (2+a—3B8)S+2aT
Vo 1 AL2—=PB)S —2pT]
where V, = 4ra,bj/3 is the starting volume.

If the void is momentarily a sphere of radius a = b, then (2.11) reduces to = 2/3, and
(2.16) has the limit o = 2/5; (2.20) and (2.23) give

da, ' (2.24)

5 5
ni = 3(S -T) = ° (2.25)
and
Vo1 3
These results can be restated as
. S
A= fé (2.27)
and
1V 3[s+2T
iV 4[W] @29

in terms of the remote strain-rate ¢ = a/(3n) as given by (1.9).

3. Evolution of an Initially Spherical Void under Various S/T in a Linearly Viscous
Material

Equation (2.24) relates the evolving aspect ratio and the volume of the void, independently
of time and viscosity. This relation holds for time-varying S and T as long as S/T is fixed. In
turn, the aspect ratio is related to time and viscosity through (2.20) or (2.21). A differential
relation between the aspect ratio and the remote logarithmic strain ¢ may be obtained
immediately from (2.20) and ¢ = (S —T)/(3n) as

di _ 3P[2-B)S—2pT]
de  2a(S-T[222+p01=-15)]

and this relation also holds for time-varying S and T if S/T is fixed. Volume histories as
functions of remote strain ¢ may now be calculated parametrically in terms of 4, with V/V,
obtained from (2.24) and ¢ found from integration of (3.1).

3.1)
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Figures 3.1(a) through 3.1(g) illustrate what happens to initially spherical voids for all
representative combinations of S and 7. The chart in Fig. 3.1(a) summarizes the
asymptotic shapes and values of V/V;, A, a, and b towards which the void evolves. In
Figs. 3.1(b) through 3.1(g) the void volume normalized by its starting volume is plotted as a
function of the remote stretch in the 3-direction (or its inverse), which is related to the remote

logarithmic strain by

(L/Lo)o = €".
ASYMPTOTlC VALUES ASYMPTOTIC
S V/Vg | A=a/b| a/0, | b/b, SHAPES
ol NEEOLE
@T .0 |1288] = | = | 0
- NEEDLES
<\ 0 CYLTRDER
@ S/T=4 g o oo | 1942 h
D |
45Tz = | = | e |
5+ 0 PROLATE SPREROIDS
@ Y1 I BN El Ml 6
>0 SPRERE
@ A Bt B il M O
T>0 0BLATE SPHEROIDS
@ pomeo| (0N 2| =) OO
CRACK
@ e 0 | 0 | e | —
< CRACKS
G §<(‘|? 0 0 0 finite ——
< POINT
@ SS/TO-I L L A '
T- NEEDLES
DEDRRE

F1G. 3.1(a). Asymptotic geometries of initially spherical voids.

(3.2)

(-

Since the material is incompressible, (L/ L,),, is also the inverse of the remote area reduction.
The curves in Figs. 3.1(b)-(g) are independent of the time variation of S and T as long as S/T
does not change in a given history.

The plots of Figs. 3.1(b)-(g) will be discussed in turn, starting at 12 o’clock in the 7-S plane
and proceeding clockwise. In Fig. 3.1(b) for 0 < T/S < 1/4 with S > 0, the void asymptotes
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to a needle-like shape of infinite length and zero radius but with infinite volume.
Exceptionally for remote uniaxial tension (S > 0,7 = 0), the volume asymptotes to a value
which is only 26.4 9, above the starting volume. For 1/4 <T/S < 1/2 with § > 0, the void
evolves towards a cylinder-like shape of infinite length and radius, except for 7/S = 1/4,
where b/by — 0.794. -

For any segment of an infinite cylinder with the x;-axis asits axis of revolution and subject
to remote stresses S and T,

V
n;=n(€£3+2éh>=7’ (3.3)

independent of S. This result, easily found by elementary considerations, agrees with the limit
of (2.23) for a - . Equation (3.3) provides the asymptotic value of ¥/V for the range of S
and T in which the void asymptotes to a needle or a cylinder, i.e.

nl ,,[Z] =T ($>0,0<T/S <1/2), (34)
14 Vi,

where here and in the sequel a subscript f denotes values associated with an asymptotic shape.
As will be seen later, this asymptote also applies in the range T < 0 with § > T. The bottom
two curves in Fig. 3.2 for S/T = 3 and S/T = 4 show V/V as a function of ¥/V, dropping
from the starting value (2.26) when the void is spherical to essentially the asymptotic value
(3.4) in only a doubling of V over V,. Thus although the void is still far from a cylinder in
appearance, its volume-rate of change is well approximated by its asymptote.

/S/T=I.O(X'I.O) S/T21.41(A22)

1.0
 \5/T1620(02.5)
9 S/T=20(xg=e) Spheroidal
’ asymptotes (3.6)
“S/T=.349(r¢=.25)
S/T+3.0
] S N o o s
Cylindrical
7L asymplates (3.4)
’ S/Tr40
K ns
5 . PR ST T | L i e e el L vl
1 10 100 1000
V/V,

F1G. 3.2. Evolution of void growth rates.

In the range 1 < S/T <2 with T> 0 the void asymptotes to a prolate spheroid
(A—A4; > 1), when S/T =1 the void remains spherical; and for 0 < S/T < 1 with 7> 0
the void asymptotes to an oblate spheroid (4 — 4, < 1). To discover the asymptotic aspect
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ratio 4, and the associated rate of volume change in the range 0 < S/T < 2,set A =0 in
(2.20) and note

B—-B,=25/(S+2T) (3.5)
The relation between 4, and S/T plotted in Fig. 3.3 is obtained from (3.5) and (2.11). The
asymptotic shape satisfies £}, = £}, and, thus, combining (2.14) and (2.22), gives
V —30 —-l-(S+2T) (0 <S/T<2) (3.6)
"Nvi], a4 ' '
Y — T T
o |
1
Bk 1
1
2 l A
S~ -
| |
% 5 ] 1I5 2
S/T

F1G. 3.3. Aspect ratios A, = (a/b), of asymptotic spheroids.

Remarkably, n(V/ V'), depends only on the remote mean stress, is independent of 4, and,
moreover, is precisely the same as the starting value (2.26) for the initial spherical shape. At
the transition between spheroids and cylinders, where S/T = 2, the asymptotic growth-rate
(3.6) is continuous with the growth-rate for the cylinder in (3.4). Figure 3.2 shows the extent to
which ¥/ V departs from (2.26) and (3.6) while the void evolves from the starting spherical
shape to the asymptotic shape. For 1 < S/T < 2, the minimum of V/V occurs when the
volume has increased to about three times itsinitial value and never drops below 90 % of (3.6).
The minimum of ¥/ V can'be arbitrarily small for sufficiently small S/T, but for S/T > 0.3 it
does not fall below 80% of (3.6).

When S < 0 with S < T in Fig. 3.1(f), the void is crushed to a penny-shaped crack (a; = 0)in
the x,-x, plane. With the exception of the case S = 0 for which b/b, — ov and V/V, — 2.356,
the volume goes to zero and b approaches a finite value at a finite remote strain, as can be
determined from the intercept with the abscissa. In uniaxial compression (S < 0,7 =0)a
remote length reduction of about 50 % is needed to completely flatten out a spherical void;
the final radius of the crack is 1.41 times the radius of the starting sphere.
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Finally, forT < O with § > T in Fig. 3.1(g), the void is crushed 1o an infinitely long needle
(a = o0, b — 0) with zero volume. Complete collapse is not attained at finite remote strain but
is only approached asymptotically with (3.4) as the asymptote for V/¥. Under transverse
pressure alone (S = 0,7 < 0), an overall area reduction ratio of 12: 1 is needed to squeeze the
void into a needle-like cavity having 0.1 % of its original spherical volume.

Under all-around hydrostatic pressure (S = T < 0) the void remains spherical and shrinks
to a point. In this case, however, the spherical shape is unstable in that any axisymmetric
departure from sphericity will drive the void to either a penny-shaped crack with finite radius
or a needle with finite length, both with zero volume. Similarly, the asymptotic shapes
found in the tensile range, 0 < S/T < 2, are also possible solutions when the signs of both §
and Tarereversed. In fac, if the void started with the asymptotic aspect ratio 4 rather than as
a sphere, the aspect ratio would remain unchanged as the void collapsed to a point. However,
it is easy to show that these shapes are unstable in compression, just as in the case of the
spherical void when § =T < 0.

3 S
(91‘ £ DT
30+ SN '
S/T=Q \
v 20 __— 2
Vo S Yo sl \'"\ T/5:0
SR s
'-OL‘ NN TN | T/5e-3%
> T g
s\ WILN /5217
o} 0 Ak TN 5 ; b) 0 . Ly Al
0 10 20 30 _ 40 50 0 5 10 15 20
Tt St
o - . 1} ] A R
0 2 a 3 8 10 8 0
Tt
k2

F16. 3.4. Void-volume time histories, $ < 0.

Time histories of the volume for S < O are shown in Fig. 3.4. Here use is made of (2.21) and
it is now assumed that S and T are time-independent. For $ <0 and T > S (Figs. 3.4(a)
through 3.4(c)) ¥ — Oat finite time; for S < 0and7 < S, ¥ — 0ast — oc. The nearly identical
responses in Fig. 3.4(d) for 0 < S/T < 1reflect the fact that the void very quickly assumes the
asymptotic growth-rate (3.4) for the cylinder or needle.
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4. Deformation of an Infinite Cylindrical Void in a Nonlinearly Viscous Material

Let the axis of an infinite cylindrical void of radius b coincide with the x;-axis. The surface
of the void is traction-free, while far from the void the stresses are specified by S and T as in
(1.5). Surrounding the void is the incompressible, nonlinearly viscous material (1.3). Solutions
to this problem have been given by McClintock (1968) and Rice and Tracey (1969) for the
rigid—plastic limit (n = oo) and by Tracey (1971) for arbitrary values of n. The solution
presented here is in a form which is particularly simple and appropriate for the void growth
problem. In addition, the solution will be used to infer the ranges of S/T corresponding to
needles or cylinders as asymptotic shapes.

In a cylindrical coordinate system (r, 8, z) the nonzero in-plane velocity component is v,(r)
and the nonzero strain-rate components are

du, l

é,= é‘r‘. ég=’;l),, é,=é, (4')

where ¢ is given by (1.9). Incompressibility requires

~dr-+:v,= —& (4.2)
from which it follows that
v, = Ar™' =kri (4.3)
and
E,= —Ar -k, (4.4)
g =Ar -}, (4.5)

where A is a free amplitude factor.
Equilibrium requires

de, o,—0
— + 8

==ehom— = 0. (4.6)
But from (1.3) and (4.4),
0, — 6y = 200, (&, ~ &) = —4nAr=*(3né, ) V" 4.7)
where
£ = (26,8,3)' 1% = AAPr~ 43 4 %)% (4.8)

Substitution of (4.7) into (4.6) and integration of (4.6) from r = b, where 6, =0, to r = o,
where o, =T, gives

T = (3n)!"(44/3) J ) (@A2r~4/3 + g2 ~mi2n =34, (4.9)
b

By (1.9), this can be rewritten as

T 44 (= 24 \? 1-n)2n
LMy r r-3dr. (4.10)
S-T 3¢ L [ (ﬁe) I
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Lastly, with the change of integration variable

b\? 24
x=w|=]|, where w= 7 . 4.11)
r J 3ih?

{(4.10) gives the final result

S [ 1 -1
=1+ S Ly Pl 4.12)
r= 1+ 5.

The rate of volume change of a segment of the cylindrical void with current length L is
V=2nLbb+nb?L = 2nLA, (4.13)

where the last equality follows from (4.4) and &, = b/b, ¢ = L/L at the cavity. Therefore

1V 24 A 14
= = ) .

PV e ¢ (414)

and consequently (4.12) with (4.14) provides the desired relation between S/T and V. (V).

For the linearly viscous material (n = 1), (4.12) integrates to

\v 3T

— = - 4.

iV S-T (4.19)

in agreement with the result obtained by combining (3.4) and (1.9). For a rigid-perfectly
plastic material (n = o), (4.12) can be integrated to give McClintock’s (1968) formula

1V = (3T
= /3sinh . 4.16
2 <S—T (4.16)

This formula brings out the large amplification of the volume growth-rate when triaxiality is
high, i.e. when T'» S —T or, equivalently, when o, » ¢. The formula is valid for arbitrary
signs of S and 7. and high hydrostatic pressure in combination with remote straining é has a
correspondingly large effect on the rate of void collapse.

The solution (4.12) can be used to infer whether a void which starts as a sphere, say. will
evolve to an asymptotic shape which is a cylinder or needle. First, suppose S and T are in the
range in which the void asymptotes to a cylindrical void, which as previously defined requires
thata/b - oo withb = 0. If the void is to asymptote to a cylindrical void, the cylinder solution
must for consistency grow in radius, or at least not decrease in radius, but in such a way that
itselongation per unit length iseven more rapid. That is, for Sand Tin the range such that the
cylindrical void solution satisfies

0< €<l with &> 0, 4.17

g
£
the asymptotic shape is expected to be a cylinder. By a similar argument the asymptotic shape
will be a needle (b - 0, a — oc) when

1 b L

-—- <0 with £>0. (4.18)

eb
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From (4.13) and (4.14),

16 1{1V 1
st | | = = -1). 4.
ib Z(éV l) 3(V3e-1) “.19)
The transition of the asymptotic shapes from needles to cylinders occurs when
b Vv
&b or = (4.20)
which from (4.12) corresponds to
1 /3 -1
ST=1+ ﬁU. (1 + x3" "'”“dx:‘ . (4.21)
0

Forn =1 (4.21)gives S/T = 4 and, for n = o0, §/T = 4.153. A plot of the transition values of
S/T as a function of n is shown in Fig. 4.1. The transition between asymptotic shapes which
are cylinders and those which are pseudo-spheroids occurs when

> v
;S-, =1 (>0 or = o =3, (4.22)
whence
V3 =1
ST=1+/3 U (14 x4 "'"'z"dx] : (4.23)
0

For n =1, (4.23) gives S/T = 2, and, for n = x, S/T = 2.315; the results for intermediate
values of n are shown in Fig. 4.1.

NEEDLES
4T ¥
. CYLINDERS
3’r Y.
«
s
¥ 1
2
PSEUDO-SPHEROIDS
v,
oWl
0 L I L. 14 )
1 3 5 7 9 ' =

F1G. 4.1. Transition boundaries (S > 0), pscudo-spheroids to cylinders to needles.

5. Deformation-rate of a Spherical Void in a Nonlinearly Viscous Solid

The initial rates of deformation and dilatation of a spherical void in an infinite block of the
incompressible, nonlinearly viscous solid characterized by (1.3) is studied in this Section. As
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in the linear problem, the block is subject to the remote stresses (1.5), but now attention will
be directed mainly to the ellects of axial and transverse stresses S and T that are either both
positive or both negative.

The minimum principle for velocities stated by Hill (1956) will be generalized to a form
appropriate for infinite domains, and then used to find approximate Rayleigh—Ritz solutions.
Consider a traction-free void of arbitrary shape inside a finite spherical region whose radius R
will subsequently be permitted to become unbounded. The outer spherical surface is denoted
by Sz, its outward unit normal by n, and tractions T, = ¢{7n; consistent with the uniform
stress state 0™ given by (1.5) are imposed on S. The material region surrounding the voidand
contained within S, is denoted by V,. Then (Hill, 1956) the velocities v; minimize the
functional

o= J. W(é)dV—J aiinu;dS, (5.1
Va Sk
where the usual admissibility conditions
vy =0, & =4, +v0), (5.2)
are imposed, and
t n
W(e) = L o,déy = (3n)'" (n +—l->(éf)‘"””", (5.3)
where
be = (2302 (5.4)

Here &, is an effective strain-rate which, from (1.3), is related to o, according to the simple
tension formula (1.1).
Now let
v=vf +0 and &, =&5+E (5.5)
where v* and &¢* are the velocity and uniform strain-rates due to ¢ * in the absence of the void
and where

i:;j= i‘('ji}+ ,';]. ,‘). l}k.k = O (56)
The minimum principle remains valid if the ® in (5.1) is replaced by
b= J‘ [W(e) — W™ )]dy_,[ oindS (5.7)
Fr Sk

and this new ® is minimized with respect to the additional velocity field v. Next, by the
principle of virtual work,

.[ o;jn;v;dS = .[ a?;a:,,-dV+'[ oiin;b,dS, (5.8)
Sr () s
where n is the unit normal to the void surface S pointing into V5. Thus, (5.7) can be written as

¢>='[ [W(e)—W(ew)-a,';é,j]dV—'[ o5 n;0,dS. (5.9)
Ve s
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It is now possible to let the outer radius R become infinite. For x — o0, - 0, and
W(E) — W(E¥) — a5, = O(E,E,). (5.10)

Thus the volume integral in (5.9) is well defined for R = o for all additional strains which
satisfy

E=o(r ") as r=(xx)"'? >0, where §>3/2. (5.11)

In the linear problem (n = 1) for the spherical void, € ~ r~* for large r. For the spherically
symmetric solution with § =T, ¢ ~ r~2 for large r for all n and (5.9) is well defined even
though ¢* = 0.

In the rigid—perfectly plastic limit, (5.9) continues to apply, but ¢* must satisfy
si; 85 = 20¢/3. In this limit, the minimum principle reduces to the one used by Rice and
Tracey (1969) in their rigid—plastic analysis. For finite n a principle suitable for infinite
domains that is essentially the same as the one derived here was communicated to one of us
(B.B.) by J. R. Rice in 1967,

5.1. Spherically symmetric solution (S =T)

We digress briefly to give the solution for the case in which the remote stress conditions are
equivalent to hydrostatic pressure or tension (g,, = S = T). We shall also give the solution for
the spherical void in a finite spherical region with outer radius R since this simple solution
brings out the strong influence of the void volume fraction when the material is nonlinear.

The strain-rate components of a spherically symmetric solution in a spherical coordinate
system (r, 0, ¢) are related to the radial velocity v,(r) by

b =0, fp=ty=rlu, (5.12)

Incompressibility requires v, , + 2r ~'v, = 0, which implies that the most general spherically
symmetric velocity is

U,= Ar‘z_ (513)

With the aid of (1.3) and (5.12), the radial equilibrium equation can be integrated subject to
o, =0atr=aand g, = o, at r = R. The equation for 4 which results is

3 n -n
A = sign (am)%’ Bﬂa..l] [l —p""] , (5.14)

where p = (a/R)? is the ratio of void volume to total volume. The dilatation rate of the void is
V/V = 3v,(a)/a, and so we have

ry = tsenton| onl [ [ 10| (5.15)

The influence of void volume fraction on the dilatation rate is seen by expanding (5.15) in
terms of small p:

n i = %sign(am) I:%hr,,q [l +nptfh 4 ] (5.16)

Note that the lowest order influence of the nonzero void volume fraction entersas p 1" A void
volume fraction of only one-tenth of 1% (p = 10~ ?) already increases V' by almost 30%,
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above the prediction for the infinite region (p = 0) when n = 3. Interaction effects between
voids are therefore expected to be significant at relatively low volume fractions for the
nonlinear materials, and this must be borne in mind in any attempts to use solutions for the
isolated void in an infinite block to make predictions for porous media. Conversely,
numerical calculations carried out for finite blocks of material cannot be expected to reflect
accurately the behavior of a void in an infinite block unless the void volume fraction is
extremely small.

5.2. Numerical solution (S # T)

Foro = S— T # 0, a Rayleigh-Ritz method based on the minimum principle was used to
generate approximate solutions in the nonlinearly viscous range, including the
rigid—perfectly plastic limit. Attention will be focused on the results for the rates ol volume
change of the voids and for the character of their changes from an initially spherical shape.

A general representation of the incompressible, axisymmetric additional velocity field can
be written in terms of a stream function y(r, 6) as

b, = —r 2(sinf) "' (xsin0) 4, Vo=r""y,. (5.17)
For a field which is symmetric with respect to 8 = n/2 (x5 = 0), x can be expressed as
x(r,0) = Acotf + Z P, 4 (cosB)f,(r), (5.18)
k=2.4,. ..

where P, (cos) is the Legendre polynomial of degree k. The first term in (5.18) generates the
spherically symmetric contribution (5.13) to the field. The amplitude 4 and the unknown
functions f,(r) must be chosen to minimize ® in (5.9). From (5.17)

6, =Ar *+ Y nln+ )Pdcos0)r "2 (r) (5.19)
k=24, ...
and

b= 3. PiolcosO)r s (r). (5.20)

The rate of change of void volume is given by
V=J v,dS =4nA or V/V=134a"* (5.21)
Ay

and is thus uniquely tied to the spherically symmetric field. .
The functions f,(r) were approximated by a finite number of terms according to

fin= Y AP = AP+ AR+ AP R ASTT R (5.22)
i=1
Expressions for the associated additional strain-rates are readily derived from

2 - 2 -1 .~ -1 < _ 1 M
E,=10,,, Eg=7r "Uggtr U, Ey= —E —&,

r

(5.23)

érO = f(’_lﬁy,o_’_ldo+ﬁa.r)-
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For convenience, the amplitude factors 4and AL (k = 2,4, .. .;i= 1,2, ... )aredenoted
collectively by { A;}, and these are the variables with respect to which ® must be minimized.
For prescribed S and T, ® in (5.9) is

€ n/2
O({A;}) = 47!J rzdrj sin O W(¢) — W(e""))—a,-‘}?éu]d(?

a 0

n/2
—4na? J oy n,o; sin@do (5.24)

0

and the last integral in (5.24) is just

n/2
4na? J ainy;sinfdb = 4na, A +8?naz APa? "1 (4 —i). (5.25)
0 i
The double integral in (5.24) cannot be evaluated analytically in terms of the amplitude
factors except in the spherically symmetric case when A is the only nonzero factor or when
n = 1. Minimization of ® with respect to these amplitude factors was achieved by a
numerically implemented Newton-Raphson method. By the change of variable 4 = a/r, the
r-integration in the double integral was converted to an integration over the range 0 < u < 1.
At each of ten Gaussian integration stations of y, the inner integration with respect to 8 was
carried out (for assigned values of the 4;’s) with a ten-point Gaussian quadrature formula.
These values were then used in the ten-point formula for the outer integration with respect to
u. The accuracy of the scheme was checked against the exact evaluation of @ for n = 1 and for
the spherically symmetrical case for general n. In all cases checked, the numerical integration
gave @ to five or six significant figures.
For a given set of N amplitude factors the minimum condition is

dD/oA; =0, j=1,...,N. (5.26)

With { 4;} as an estimate of the solution to (5.26), the improved Newton-Raphson estimate
{A;+ AA;} is obtained from

N
Y AA,0*0/0A,04; = —0D/OA;, (527)
m |
where the partial derivatives are evaluated at {A;}. All partial derivatives were found
numerically from finite difference formulas such as

00 DAy, Aj+0, ) =O(Ay, . A6 )
A, 25 ‘

J

(5.28)

The scheme proved highly effective and displayed the quadratic convergence characteristic of
this method in the vicinity of the minimum.

The choice of functions used for the representation of x(r, 8) in (5.18) and (5.22) was guided
by the results of trial calculations aimed at reaching the minimum of ® most efficiently. In
addition to the spherically symmetric term, the P, terms are the most important, and in some
of our exploratory calculations as many as six free amplitude factors (4%,i = 1, . .., 6) were
used to represent f,(r) in (522). Of these six, AY’, A% and A% were found to be more
important than any other set of three and led to results which were not appreciably different
from those obtained with the full set of six. Our final choice of y, which was used in
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determining most of the numerical results presented below, was

x(r,0) = Acot8+ P, 4(cos0) [AP + AP r~ ' + A5~ 2]
+ Pa,g(cosO) [AP + AP r t+ AP r~ 1], (5.29)

with a total of seven free amplitude factors.

The numerical minimization procedure gave results for the linear case (n = 1) which were
accurate to six significant figures. However, this accuracy reflects mainly on the numerical
evaluation of ® since (5.29) contains the exact solution when n = 1, i.e.

5 5
A=-—as, AP = —3/4‘2‘”(12 = %a%, (5.30)

with the other amplitudes zero. For n > 1, the terms containing P, have a minor quantitative
influence on the shape change but are not crucial as far as qualitative predictions are
concerned. A form of parameter tracking was used to generate numerical results. For a given
SandT, the solution for n = 1 was used as the first guess of the solution at a somewhat larger
nand when that solution had been found it, in turn, was used as the first guess for a yet higher
n. Calculations for n = co were carried out separately.

As a check on our numerical method and to make contact with the analysis of Rice and
Tracey (1969), we specialized our scheme to the rigid—perfectly plastic limit (n = o0) and
studied the results of choosing the same approximating functions used by Rice and Tracey.
Their analyses only involved two degrees of freedom: the amplitude A of the spherically
symmetric field and the amplitude of a P, term with a fixed, associated r-variation f,(r). They
did, however, repeat their calculations for six choices of f,(r). Our specialization to the choices
of Rice and Tracey did reproduce their numerical results in all cases checked. While ¥ was
only slightly affected by the choice of f,(r), Rice and Tracey found substantial variation in the
corresponding shape changes. For convenience, let us denote the rate of change of the vertical
axis of the spherical void by d and let b be the rate of change of the equatorial radius. For
6, > o > 0, Rice and Tracey found that for four of their r-variations, the shape became
prolate (@ > b), while for the other two f,(r) choices it became oblate (@ < b). Rice and Tracey
discounted the possibility of evolution towards an oblate shape in the presence of a positive
axial strain-rate at infinity and attributed this anomalous prediction to poor choices for f;(r).
They evidently did not note, however, that the two “poor” choices gave lower values for the
minimum of ® than did some of the other four choices. It will be seen that for n > 1 evolution
towards an oblate shape is the rule rather than the exception when ¢ > 0 and the triaxiality
ratio o,,/0 is high.

Numerical results obtained by minimizing ® with respect to the seven amplitudes in (5.29)
will now be presented. Figures 5.1(a) and 5.1(b) give plots of V/(¢ V) as a function of ¢,,/0
for the case when both ¢,, and ¢ are positive (i.e. S + 2T > O and S > T) or are both negative.
The solid line curves are the numerical results obtained from (5.29). As already mentioned, V
is only weakly dependent on a wide variety of choices in approximating functions when
6./0 > 1. In fact, for sufficiently large ¢,,/0, accurate results for ¥ are obtained by using just
the spherically symmetric term, and the dashed line curves in Fig. 5.1(b) are based on an
approximate formula derived under this assumption in Section 6. The dashed line curve for
the rigid—perfectly plastic solid (n = co) coincides with the corresponding high triaxiality
approximation of Rice and Tracey (1969).
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FIG. 5.1(b). Dilatation rate of spherical void, moderate to high triaxiality.

We note from Fig. 5.1(b) that nonlinearity plays an exceptionally strong role in the
expansion (or contraction) of the volume growth-rate of the void, as measured by V/(¢V), in
the high triaxiality range where o,,/6 > 1. A similar conclusion was drawn by Hellan (1975)
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on the basis of a high triaxiality approximation not unlike that which will be discussed in
Section 6.

Numerical results related to the shape change of the spherical void are shown in Fig. 5.2,
where curves of a/b are plotted against S/T for the case in which S and T are both positive (or
both negative). For the linearly viscous solid (n = 1),

a 9a,+ 200 30(S-T7)

B 90, 100 ' Tier—7s" (531)
and the void grows towards a prolate shape when 0 < T < S and towards an oblate shape
when 0 < § < 7, as has already been discussed in Section 3. In contrast, a spherical void in a
rigid—perfectly plastic solid (n = =) growstowards an oblate shape when0 < T < § < 1 .85T,
and b can be more than twice a. This seemingly anomalous effect is biggest at high n and
essentially disappears for n less than 2. For 0 < § < 7T the situation reverses with the void
becoming prolate in the nonlinear material for S/7T sufficiently close to unity.
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FiG. 5.2. Initial shape change of spherical void.

Void oblateness is obviously significant in void interaction and coalescence under tensile
straining, since the cross-sectional area of the void perpendicular to the straining axis is a
more important variable in void coalescence than is its volume. A qualitative explanation of
the origin of this counter-intuitive effect will now be given.

The deformation of the void in the linearly viscous solid is in accord with geometrical
intuition in that one expects a remote tensile strain-rate £ to elongate the void in the direction
of straining and detract from growth of its equator. The converse behavior for the void in
the nonlinear material under sufficiently high triaxiality is a consequence of two factors—the
nonlinear coupling between ¢ and the spherically symmetric field, and the nature of the flow
law (1.3) at high n. Equation (1.3) can be written as

&= Yi.(5,/0.), where &, = io(0./0)" (5.32)
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In the rigid-perfectly plastic limit of (5.32), 0, = g, wherever yield occurs. The spherically
symmetric solution (¢ = 0, ¢,, > 0) gives rise to strain-rates given by

b=~k ko= iy = b (5.33)

Imposition of a remote tensile strain-rate ¢ > 0 induces a large spherically symmetric con-
tribution to the void deformation when ¢,, > a > 0O at high n, as has already been discussed.
Thus the stresses at the void are determined largely by the spherically symmetric term at high
n when triaxiality is high and, from (5.32), this means that the strain-rates are still given
approximately by (5.33)at the void. But imposition of a positive £ gives rise to a variation of ¢,
at the cavity which is largest near the equator and falls to a lower value at the poles. (This
observation, which is in accord with intuition, holds for all n, including the linear material.) It
follows from this variation and {rom (5.33) that at high n the void equator lengthens more
rapidly than the meridians, i.e.

ZJ Eola,adl < 2naiy(a, n/2). (5.34)
0
It is then easy to show that (5.34) implies that ¢ < b for all deformation patterns in which the
P, variation is the dominant nonspherically symmetric contribution at the cavity.
Andersson (1977) noted growth to oblate shapes in his study of a void centered in a finite
cylinder of rigid—perfectly plastic material (5.32). The lateral sides of Andersson’s cylinder are
free of shear traction and are not permitted to move radially. An imposed overall elongation
of the cylinder occurs at the expense of a corresponding increase in volume of the void and
induces high triaxiality in the cylinder. Andersson took the void to be a sphere at the start of
the overall elongation. As the cylinder elongates the void becomes oblate and grows in this
fashion until nearly all the continuing deformation is confined to the remaining ligament
between the void and the cylinder surface. The interaction between the void and the cylinder
wall is undoubtedly a contributing factor to the development of oblateness in Andersson’s
void, butit is likely that the effect discussed in the present paper plays the dominant role in the
early stages of growth.

6. High-triaxi;Iity Approximation of Growth-rate of Spherical Void

A good approximation to ¥ when |o./a] is larger than about unity can be obtained by
neglecting all but the spherically symmetric contribution to the velocity ¢ in the minimization
procedure discussed in Section 5. The end result, after some further approximation, is a
simple formula for the dilatation-rate of the spherical void. The analysis generalizes a similar
one for the rigid—perfectly plastic case given by Rice and Tracey (1969), and the formula
derived for (/¢ V) agrees with their results in the limit n — .

With only the radially symmetric contributions

b= Ar 2, &= —2kg= —28, = —24r"3, 6.1)

used in the calculation of ® in (5.24), we find directly

®=2n'[ sine)doj {(3,7)”" <L>[52—éAh(o)r'3+4A2r—6]<"+“/2"
0 a n+1

— (3?7)”"(’]—: 1 ) |g|t"*m — g AR (O)r } r’dr —4no, Ad® (6.2)
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in terms of A and ¢ with ¢=5-T=(3n)'"¢|" """, o, =(S+2T)/3 and
h(0) = 1 + 3 cos 26.
Introduction of the key variable

vV 34
iV éad

and the substitution z = &|A|(a/r)> reduces (6.2) to ® = (4na*/3)(n/(n + 1))(aé) F, with

" HAl (n+1)/2n
F= 1 G gag -2 g (D) g 22 (nE LN AT
3 Jo 0 2 4n z n a

(6.4)

w

(6.3)

where m = sign(A).
The quantity A may replace A as the single free variable in the minimization of @, and so
dF/dA = 0 gives

mi((* Hal mzh (n+1)/2n n+1 dz
— in6 | — —=— + 22 - —

BL sin dﬂjo {[ 3 +z :I 1+< an )mzh}z2 .

m " mlA]h 4 {n+ 1)/2n n+1\/co

—_— 1 — Al? 0do — — = 6.5
e [ g smoan— = () e

This can be used, via numerical integration, to provide the desired estimate of the relation
between g,,/0 and V/(¢V). However, we can obtain a useful analytical approximation to this
result. 1t is seen that for large |A| the dominant contribution of the integrals in (6.5) is

2A
3

1in

—( D= (6.6)

This implies that m = sign(A) = sign(c,./0) for sufficiently small |o|, and also provides the
asymptotic approximation

30,
o

3m

> (6.7)

A=

Except for n = 1, where it is exact, this estimate for V/(¢ V) is too crude since it is invalid for
n= oo and has a very small range of validity for large n. The next term in the asymptotic
expansion of the left-hand side ol (6.5) for large A is a constant which is of magnitude
comparable 10 (6.6) as n — oo and must be included if an estimate of A that is uniformly valid
for all n is to be obtained.

To get this better estimate, we write the left-hand side of (6.5) as

B 1in
2Tm(n+1) S +G(n, m+ }, (6.8)

where, by subtracting (6.6) [rom (6.5), we can get

1 " ! mzh (n+ 1)izn n+1 dz
- —14+— | s _mar _ Y mzn V2
G(n, m) 1+2(n+1)J‘0 sinfdé L {[1 5t :| 1+( an )mz }zz
1 n x mzh (n+1)/2n e 1)/ dZ
i - n+ 1in (6.9)
+2(n+1)J0 sinf0do Jx {[1 5tz ] -z 2
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The terms omitted in (6.8) vanish for large [A[. The improved estimate for A becomes
V  3m { 3

&V 2 |2n

0

—G(m, n) } (6.10)

0

and this is a uniformly valid asymptotic approximation, for large ¥/ (¢ V), for all n.
The formula still requires numerical evaluation of the integrals in (6.9), but now we expand

G(n, m) into
G(n,m):—[l+g(m’)l_l+...] (6.11)

for large n; then

om = tim| o=t [“simoan [ {172 1 }_l_z}j_f], ©6.12)
£~ 0 c

which can be evaluated analytically to give

2
g(l) = ]n3—§~=4 0.4319,

(6.13)
g(—1)= 7 0.4031.
Finally, we use the approximation

which is correct to order 1/n at n = oc, and correctly vanishes at n = 1. A comparison
between this approximation to G (n, m) and the numerical evaluation of G(n, m) in (6.9) is
shown in Fig. 6.1 for m = 1; the comparison for m = — 1 is equally good. Used in (6.10), this
gives our final approximate formula

V. _3m{3|on], (n=D[r+g(m]"
v 7{5; Fil ' ©13)
In the limit n — o0,
vV 3m 3|0,
ry7he Texp[g(m)—l]exp[i - ]
3o, Om
=0.850exp[§}; } for . > 0,
- —o.szsexpP Im ] for 2= <o, (6.16)
2i0 o

in agreement with the high triaxiality formulas derived by Rice and Tracey (1969).

A comparison of (6.15) with the unapproximated high triaxiality relation (6.5) is made in
Fig. 6.2, where the ratio of the two estimates of I/ (¢ ¥) is plotted against |a/a | for various n-
values for m = 1. Results from (6.5) were obtained by numerical integration. The comparison
for n = 1 is not shown since both results are exact in this case. The simple formula (6.15) is
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(n-D(n+g(m)
AEuLhR LU

1/n

F1G. 6.1. Accuracy of approximation to G (n, m).

|o70m|

FiG. 6.2. Accuracy of analytic approximation for dilatation-rate in high triaxiality range.

within 2% of the unapproximated result (6.5) for |6/6,| <1, which is the range of
applicability of the high triaxiality approximation. Similar claims hold for the case m = — 1.
Results from the simple formula (6.15) are shown as dashed line curves in Fig. 5.1(b), where
they are compared to the predictions obtained from the more extensive calculations of
Section 5. For 6,,/0 > 2, (6.15) clearly provides an excellent approximation; and even for
o,/c as small as unity, (6.15) underestimates the mote accurate results by no more than 20 %;.
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Multiplying (6.15) by né = sign(o)|c|*/3 gives

Voo 3. -1 n
n7=%sxgn(am){ﬂ|oml+(n )[:2+g('")]|a|} 6.17)

and it is seen that (6.17) agrees with the spherically symmetric result (5.15) (with p = 0) when
o = 0. The strongly nonlinear character of the interaction between ¢ and o, in the high
triaxiality range can be seen by comparing the dilatation-rate from (6.17) with the
corresponding rate from (5.15) for remote hydrostatic tension or with the rate under remote
uniaxial tension from Fig. 5.1(a). As an illustration, for n =35 the dilatation-rate V/V of a
spherical void under combined ¢, and ¢ with ¢,,/0 = 2 is almost 100 times as great as the
dilatation-rate of a void under a pure hydrostatic tension ¢, and more than 10 times as great
as that of a void under uniaxial tension o.

7. Strain to Void Coalescence from Asymptotic Growth-rates (S > 7 > 0)

In this final Section we shall produce a rough estimate of the strain needed to enlarge the
voids in a porous solid to the point where coalescence is imminent, following an approach
similar to McClintock’s (1968) analysis based on cylindrical void solutions. We shall make
use of the growth-rate of the asymptotic voids for this purpose since this greatly simplifies the
calculations. In Section 3 it was seen that the growth-rate of a void of initially spherical shape
in the linearly viscous solid closely approaches the asymptotic value after only a doubling of
the initial volume. It seems reasonable to expect similar behavior of voids in the nonlinear
materials as well. Of course, if it is assumed that the initial void shape is the asymptotic shape
then the asymptotic growth-rate truly holds from the start.

Asymptotic growth-rates from the previous Sections are assembled in Fig. 7.1, where
we have plotted (V/éV);* as a function of S/T for various n ranging from 1 to co.
For 1 < (V/éV) ; < 3 the asymptotic shape is a cylinder and the curves in this portion of
Fig. 7.1 are obtained from (4.12) and (4.14). (The extensions of these curves into the range
(I://é V), < 1, where the asymptotic shapes are needles, are also given by (4.12) and (4.14).) For
(V/éV), > 3 the asymptotic shapes are prolate spheroids for n = 1 and either prolate or
oblate pseudo-spheroids for n > 1. The curve for n = 1 in Fig. 7.1 in the range of asymptotic
spheroids derives from (3.6) giving the same relation as (2.28) for the spherical void.

For n > 1 only limited information related to the growth-rate of the asymptotic pseudo-
spheroids is available; nevertheless, it is sufficient to fill in the dashed-curve estimates in Fig.
7.1. In the high triaxiality range, where S/T is near unity, the growth of the void is dominated
by the spherically symmetric contribution and the asymptotic shape will be nearly spherical,
although slightly oblate for n > 1. The growth-rate for the spherical void should provide a
good approximation to the asymptotic growth-rate in this range, and (6.15) has been used to
plot the curves in Fig. 7.1 near S/T = 1. For increasing S/T the oblateness of the asymptotic
shape first increases and then decreases to zero (a = b). For still larger S/7 the asymptotic
shape is increasingly prolate until it becomes cylindrical at (¥/&V), = 3. The results for the
shape change of the spherical void in Fig. 5.2 can be used to estimate the transition of the
asymptotic void from an oblate to a prolate shape. We assume that, when a/b = 1 for the
sphere, the asymptotic shape will be a pseudo-spheroid with a = b (approximately) and that
the growth-rate for the sphere should be a good approximation to the asymptotic growth-
rate associated with this transitional shape. The circles in Fig. 7.1 are estimates of these
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F1G. 7.1. Asymptotic dilatation rates; analytic (solid lines) and estimated (dashed lines).

transitional points so obtained. The remainder of the dashed curve for each n is faired in to
connect smoothly the high triaxiality results, the transition point, and the cylindrical limit of
the prolate shapes at (V/¢ V), = 3. (Subsequent work addressing the accurate calculation of
the asymptotic void shapes and their associated growth-rates, published in the Proceedings of the
15th Congress of Theoretical and Applied Mechanics at Toronto, reveals that the estimates in Fig.
7.1 are quite reasonable.)

Now we can turn to the problem of estimating the strain at which voids coalesce in a
porous block subject to overall stresses Sand T'in (1.5) with § > 7 > 0. We neglect interaction
between the voids and treat each void as if it is isolated in an infinite block, but we relate the
growing equatorial radius b of the void in the plane perpendicular to the straining direction to
the shrinking distance w between voids in the same plane. Coalescence becomes imminent
when b/w grows to some sufficiently large value, (b/w).,.

Whether the shape is a pseudo-spheroid, a cylinder, or a needle,

¥ = b/(b) (7.1)

is constant for an asymptotic void growing under fixed $/T. With b = b as the initial
equatorial radius of the void at the start of straining, (7.1) gives

b/by = exp(Ve). (7.2)
The spacing between the voids in the plane normal to $ contracts according to
wiw= —§g/2, (7.3)
8o that, if w, is the initial spacing,
w/wo = —exp(e/2). (7.4)

MOS - C
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From (7.2) and (7.4) the ratio of void radius to void spacing increases with strain as

(b/w) _ 1
b/w)o °"p[(5+ ‘pH )
and thus the critical strain at which (b/w),, is attained is given by
2 T(b/wk
& = 132y lnli(b/w)0 :| (7.6)

When the asymptotic shape is a cylinder or a needle, (4.19) gives

1[/v
v=3l ()] -

and thus, from (7.6),

V! v
b (_— for <—> <3, (7.8)
¢ £V, £V,
where
(b/W)e ]2
c=In . (7.9)
|:(b/W)o
Asymptotic spheroids or pseudo-spheroids satisfy
1/ v
Y =§(H/>, (7.10)
whence

Y

bor 2{ V 14
- = l/[l%—i(ﬁ/)f:l for <i;V>f/3, (7.11)

which equals (7.8) when (V/¢ V), = 3. Curves of 0,,/0 as a function of ¢,/c in the range in
which the asymptotic voids are cylinders or needles are shown in Fig. 7.2(a) and are obtained
from (7.8) and (4.12). Similar curves on an expanded scale for ¢, /c are shown in Fig. 7.2(b) for
the range in which the asymptote voids are pseudo-spheroids. (McClintock’s 1968 results for
cylinders are essentially equivalent to those in Fig. 7.2(a) but he extrapolates them into the
pseudo-spheroid range of Fig. 7.2(b).) The curve for n = | is obtained from (7.11) and the
exact result for (V/eV), from (3.6), while the curves for n > 1 are obtained from the estimates
of (V/eV), in Fig. 7.1.

Interaction between voids is likely to accelerate the growth of the voids and, therefore, to
reduce the strain to coalescence below what has been predicted here. Steps to analyze
interaction have been taken by Tracey (1971), who models interaction effects for cylindrical
voids using a thick cylindrical shell configuration, and by Andersson (1977) with his void in a
cylindrical cell which was discussed earlier. More elaborate finite element calculations for
planar arrays of voids in plane strain have been carried out by Burke and Nix (1979),
Needleman (1972), and Nemat-Nasser and Taya (1976). While it is clear that interaction
effects are important in the coalescence phenomenon, it is less clear at what stage (i.e. at what
b/w) it becomes essential to allow for interaction. It may be that simpleresults such as those in
Figs. 7.2(a) and (b) which ignore interaction have approximate validity if a judicious choice
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of (b/w), is made with the aid of more accurate calculations or with experimental data.
Hancock and Mackenzie (1976) and Mackenzie et al. (1977) have carried out a major study of
the effect of triaxiality on the ductile fracture of several structural steels. They obtained
experimental data in the form of g,,/ g against ¢, for g,,/0 in the range 1/3 to 1.4, and they
compared their data with curves similar to those in Fig. 7.2(a) based on McClintock’s (1968)
analysis. While the qualitative trend of ¢,/ against &, was found to be correct, the value of
(b/w),/(b/w), needed to bring the theoretical curve into juxtaposition with the data was
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usually unrealistically small. We find similar difficulties in making a quantitative correla-
tion with their data. In the range of low ¢,,/a, where the asymptotic voids are needles (i.e. for
&./c > 1in Fig. 7.2(a)), the predictions for ¢_/c might be expected to err significantly on the
high side, since the growth-rate of a void starting out as a sphere is considerably larger
than asymptotic rates for needles.

It must be emphasized, however, that for finite n the present results apply strictly to a
nonlinearly viscous solid and not to a rigid—plastic solid with strain hardening index n,
although in the limit n — oo the distinction disappears. The work of Tracey (1971) and Hellan
(1975) indicates that the growth-rate of a void in a rigid-hardening solid coincides with the
rate of a void in the nonlinearly viscous solid at the same n at low remote strain ¢ and becomes
somewhat larger as the remote strain increases. The constitutive law used here also describes
secondary, or steady-state, creep and the present predictions for void growth apply directly
when the deformation is dominated by secondary creep. Recent work by Edward and Ashby
(1979) and Needleman and Rice (1980) has addressed the problem of void growth when
diffusion couples with creep to enhance the rate of growth. For overall states of uniaxial
tension, when the growth-rate of the void due to secondary creep alone is low, diffusion is
found to make a substantial increase in the growth-rate of the void over an important range
of the parameters characterizing diffusion and creep in common metals.
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