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Creep and Plasticity of Hexagonal Polycrystals
as Related to Single Crystal Slip

J. W. HUTCHINSON

The role of slip on basal, prismatic and pyramidal systems of hexagonal single crystals
in determining inelastic polycrystalline behavior is studied using a uniform strain-rate
upper bound and 3 self-consistent method. Steady power-law creep is considered. In-
cluded as a limiting case is rigid-perfectly plastic behavior, for which the upper bound

to the yield stress of the polycrystal coincides with the Bishop-Hill bound for these mate-
rials. When the resolved shear stress needed to produce a given level of slip on the pyra-
midal systems is large compared to that on the other systems the upper bound lies well
above the self-consistent estimate. Seli-consistent theory indicates that overall inelastic
deformation of a polycrystal is possible without pyramidal slip. Implications for hexa-

gonal materials, including ice, are discussed.

INELASTIC behavior of hexagonal materials at the
single erystal level is often highly anisotropic and a
relatively large number of different slip and twinning
systems have been reported.’ In many of these mate-
rials a given level of basal and prismatic slip is pro-
duced by shear stresses which are much below the
shear stress needed to cause pyramidal slip. Basal
and prismatic systems together comprise only four
linearly independent slip systems, allowing no inelas-
tic straining along the hexagonal axis (c-axis) of the
crystal. The additional mechanism which supplies
this missing degree of freedom, whether pyramidal
slip or twinning, has a strong influence on the overall
inelastic behavior of the polycrystal.

In this paper combinations of basal, prismatic and
pyramidal slip are considered; twinning is not speci-
fically taken into account. Steady, power-law creep
of polycrystalline aggregates is analyzed using two
methods which have previously been reported in the
literature:® i) a uniform strain-rate upper bound, and
ii) a self-consistent method. The self-consistent
method is more accurate than the upper bound and
requires somewhat more effort to apply. As long as
the inelastic anisotropy of the crystals is not teo
large, the bound and the self-consistent theory are in
reasonably close agreement. This ceases to be true
when anisotropy is large and shows up most dramati-
cally when slip is suppressed completely on the py-
ramidal systems. Then, according to the uniform
strain-rate bound calculation, the polycrystalline ag-
gregate is rigid. In contradistinction, the self-con-
sistent theory predicts that the polyerystal can still
undergo overall inelastic deformation. This is possi-
ble because the strain-rate in each grain is not con-
strained to be the same as the overall strain-rate.
Variations in strain-rate from grain to grain, depend-
ing on orientation, accommodate the inability of the
crystals to strain along their c-axis.

POWER-LAW CREEP OF SINGLE CRYSTALS
AND POLYCRYSTALS

Let #; %’ be the unit normal to the slip plane of the
k-th system and m;®’ be the unit vector in the slip di-
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rection in the plane. Denote the slip tensor for the
system by

1 .
f-lijlk)"'i(mi(kjnj[k]'*mj(k)”;'w))- [1]

With g;; as the stress, the resolved shear stress on the
system is

T = oy (2]

Let %’ denote the shear strain-rate (engineering
definition) on the k-th system and let @ be a refer-
ence strain-rate which will be used throughout the
paper. Steady creep is considered and a power-law
relation is assumed where

Y = g7 R g (%), (3]

The quantity 7o%’ is taken to be positive and is called
the reference shear stress for the k-th system. The
strain-rate is the sum of contributions from each of
the systems according to

€4 =§}’(k)ﬂij(k]A [4]

The polycrystal is assumed to be a large collection
of randomly orientated single erystals bonded together
with no sliding across their boundaries. Attention is
restricted to a common value of » for all systems.
Then the steady state behavior of the polycrystal is
governed by an isotropic, pure power relation between
the overall strain-rate and the overall stress as dis-
cussed in Ref. 2. In particular, the tensile behavior
of the polycrystal, which will be emphasized here, can
be expressed quite generally in terms of the overall
uniaxial strain-rate € and stress o by

T = a(o/To)". (5]

Thus, 0o completely specifies the uniaxial behavior;
it is called the uniaxial reference stress. It is a
function of the single crystal reference shear
stresses and »n.

Details of the two methods for estimating 7, are
given in Ref. 2 and will not be repeated here. The uni-
form strain-rate calculation provides an upper bound
to 6p. In the limit as » — = the crystals are rigid-
ideally plastic and then the bound to o, is equal to the
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bound of Bishop and Hill.">* For » = 1 the behavior is
linear viscoelastic and the bound to G, is then just the
Voigt bound. The version of the self-consistent theory
used is adapted from Hill.* In this calculation the
strain-rate and stress in each grain is determined

by taking the grain to be spherical and by embedding it
in an infinite matrix whose properties are those de-
sired of the polycrystal. The overall stress and strain-
rate are determined in terms of the corresponding
single crystal quantities by self-consistent averaging
over all grain orientations. In this approximate way
grain interaction is taken into account without re-
quiring the strain-rate to be the same in each grain.
The self-consistent estimate of oo is not a bound, al-
though for » = 1 it can be shown® that it falls between
the tighter bounds of Hashin and Shtrikman,® as will
be illustrated below.

For hexagonal crystals we specialize (Eq. [3])
further by denoting the reference shear stresses for
the basal, prismatic and pyramidal systems as T4, Ty
and 7, respectively. Thus,

u

y=al7/T41" - sign(7) for basal systems

al7/7g|" - sign(7) for prismatic systems } (6]

U

Y
y=al7/7c|" - sign(7) for pyramidal systems

where the slip systems are depicted in Fig. 1. The
two basal systems and three prismatic systems to-
gether supply four linearly independent systems, as
already mentioned. The angle made by each of the six
pyramidal planes to the c-axis is denoted by ¢ and, if
¢ i5 not 45 deg, this set provides five linearly inde-
pendent systems by itself. In Fig. 1 the particular set
of pyramidal systems illustrated is {1122K1123). A
discussion of the competition between the three types
of slip systems for ideally plastic crystals is given
by Chin and Mammel’ and Thornburg and Piehler.’

UPPER BOUND TO 6,

For n = 1 the uniform strain-rate upper bound to
Tg i given by

~ 2 TC 47g7c
% =% | Tsin?2g +_2'rc + Tg sin? 29 b

274 Te
T+ 2TAcos22¢]'

(7]

This resgli holds for any set of six pyramidal planes
each making an angle ¢ to the ¢c-axis and arranged

with 60 deg intervals between planes about this axis.
Also, the slip direction is taken perpendicular to the

G ¢
e
1 \
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\\
BASAL PRISMATIC PYRAMIDAL

Fig. 1—8lip systems. Pyramidal system illustrated is
{1122K1123).
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intersection of the slip plane and the basal plane, such
as shown in Fig. 1. The special role of the pyramidal

systems can be seen by noting that o, — = as 7¢ — =,
whereas a finite limit is obtained if 74 and/or Tp be-

come unbounded,

The problem for the limit of rigid-ideally plastic
single crystals {(n — =) can be formulated in the man-
ner of Bishop and Hill® with numerical results ob-
tained by a linear programming algorithm.’ This pro-
cedure was used to generate the results for this
limit in the figures which follow. Thornburg and
Piehler® have produced an extensive list of stress
states capable of activating different combinations of
slip and twinning systems for hexagonal crystals. For
the present purposes it proved easiest to include the
linear programming procedure directly as part of the
complete calculation program. For values of # in the
range 1 <n < = calculations were performed using the
method described in Ref. 2.

The examples discussed below were chosen with the
primary purpose of bringing out the role of the py-
ramidal systems. Figure 2 displays the upper bound
and the self-consistent estimate (to be introduced be-
low) as a function of 1/n for two levels of Te relative
to 74 and T7g. In these examples ¢ = 31,5 deg corres-
ponding to {1122K1123) systems for the ideal ratio ¢/a
= 2v(2/3). When 7o = 574 = 57p, as in the lower
curves in Fig. 2, the two methods are still in reason-
able agreement. For Iarger single crystal anisotropy
the methods begin to diverge, as will be discussed in
the next section.

If the resistance to creep on the basal and prismatic
systems is small compared to that on the pyramidal

T I ! [ 5

Fig. 2—Comparison of upper bound (solid line curve) and self-
consistent result (dashed line curve).
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Fig. 3—Values of I from Eq. [9).

systems, then the pyramidal systems essentially con-
trol the upper bound. In the limiting case where there
is no resistance to glide on the basal and prismatic
systems, f{.e., 74 = Tg = 0, the upper bound to 7, can
be obtained in closed form. Then each crystal can
support only a uniaxial stress aligned with the ¢-axis
plus a hydrostatic component. The result for the uni-
form strain-rate bound to o, for this case is found to
be

To = 7¢ Iy[sin2¢] R 1V/n (8]
where
In=fw2 sin 612 — 3 sin®g| "+ "gp. (9]
0

Values of I, are plotted in Fig. 3; I, = 2/15 in agree-
ment with Eq. (7] for n = 1 and, for n — e, [, — 4
(3v3). Eq. [8] applies to any six pyramidal planes as
specified in connection with Eq. [7].

The approach to Eq. [8] is shown in Fig. 4 where
the upper bound to (_IO/TC is plotted against TB/TC for
the case 74 = TB/].O and for the same pyramidal
systems chosen in the caleculations for Fig. 2.

SELF-CONSISTENT ESTIMATE OF g,

If n = 1 the self-consistent equation can be obtained
in closed form. It is also of interest to make com-
parisons with the tighter upper and lower bounds of
Hashin and Shtrikman® (abbreviated as H.-S.) and
Walpole® when n = 1. All three equations can be sum-
marized compactly as follows:

% = 97/(8 - 8n¢) [10]

3 1 1 1-
n= 1‘6[2(2‘ L+3d) B +3e T 3f]
d=(9/8)7c™" sin®20
e=(3/8)75" + (3/16) 77! sin’2¢

F=(3/8)7a™ + (3/4)7c™" cos’2¢e

where
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smallest of (d, e, f) for upper bound
¢ = largest of (d, e, f) for lower bound
3/(460) for self-consistent result.

For the H.-S. bounds Eq. [10] is explicit; for the self-
consistent result it is necessary to solve Eq. [10] us-
ing some simple iteration or root-finding scheme,

A numerical comparison of the uniform strain-rate
bound Eq. [7], the uniform stress lower bound (de-
tails omitted), the two H.-S. bounds, and the self-
consistent estimate are shown in Fig. 5. In this ex-
ample basal creep occurs easily compared to pris-
matic creep (74 = 75/ 10) and the effect of the py-
ramidal systems is seen through the ratio TB/TC- As
7o — = (i.e., Tg/Tc — 0) the self-consistent estimate
of 5o/ 7p remains finite, as do the two lower bounds,
but the two upper bounds are unbounded. Thus ac-
cording to the self-consistent theory, it is not always
necessary to have five linearly independent slip sys-
tems for overall deformation to occur. With glide on
the pyramidal systems suppressed (7¢ — «} there
are only four linearly independent systems available,
as previously mentioned, and [10] continues to hold
withd =0, ¢ = 3/(87g), and f = 3/(874).

The self-consistent results of Fig. 2 plotted against
1/n were calculated using the method in Ref. 2. The
seli-consistent problem for the limiting case of
rigid-perfectly plastic crystals (n — «) canbeformu-
lated separately involving quadratic programming,.

A computer program for this limit was not writlen;
n = 10 was the largest value used in the calculations.
The property discussed above for » = 1 holds for all

- n. That is, according to the self-consistent model,

overall inelastic deformation occurs even when slip
camnot take place on the pyramidal systems.

The example in Fig. 6 also illustrates the point
made in conneection with Fig. 5 but now with » = 3 and
for other parameters chosen to represent ice dis-
cussed in the next section. As in the previous exam-
ple, the deviation between the two predictions be-
comes large when 7¢ > 37p. With glide entirely sup-

TA/TB=t/]O

2.0/

1.5
o,
Tc
1.0
5
0! | Y S I, FESTUESTR
0 2 4 5 B 10
TB / TC

Fig. 4—Approach of upper bound to limiting case (Eq. [8)
where resistance to creep on basal and prismatic systems
vanishes,
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30} Tastg =10, n=1

{1) UNIFORM STRAIN-RATE UPPER BOUND
{2) H.~5 UPPER BCUND

{3) SELF-CONSISTENT ESTIMATE

(4) H.-S. LOWER BOUND

{5) UNIFORM STRESS LOWER BOUND

T,

“Fig. 5—Self-consistent results and various bounds for » = 1.
(¢ = 31.5 deg).

pressed on the pyramidal systems, oo = 3.975 (with
74 = 7/10). By comparison the result for a fec poly-
crystal at n = 3 is oy = 2.57y, where 7, is the refer-
ence shear stress for each of the {111K110) systems
of the single crystal.’

Any rigidity on the microscopic level renders the
uniforrn strain-rate upper bound infinite. Perhaps
the simplest system where this is seen is in connec-
tion with the elastic properties of an isotropic elastic
matrix with embedded rigid particles. Both the uni-
form strain bound and the Hashin-Shirikman upper
bound to the shear modulus are infinite. The seli-
consistent result for this modulug!®!* is finite and is
known to be accurate at low volume concentrations of
particles. At higher volume concentrations the self-
consistent method probably tends to overestimate the
modulus, and at volume concentrations approaching
about 50 pct the estimate itself becomes unbounded.
If this simpler system is at all representative, the
self-consistent estimates of 0y are also likely to be
overestimates when pyramidal slip is absent.

DISCUSSION

Kocks and Westlake'® have also argued that ductility
of polycrystalline hexagonal materials may not require
five linearly independent slip systems, but that a miss-
ing degree of freedom in each grain may be accom-
modated by inelastic deformation in its neighboring
grains. This is precisely the effect which is modeled
by the self-consistent approach. Kocks and Westlake
tabulate observed slip and twinning systems for a
number of hexagonal materials. They note that several
of these materials in polycrystalline form enjoy fairly
extensive ductility yet do not appear to display either
pyramidal slip or twinning. They suggest that the lack
of the fifth degree of freedom primarily influences
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Fig. 6—Self consistent results and upper bound for # = 3.
Pyramidal systems are {1122K1123) with ¢ = 31.5 deg.

the amount of ductility by increasing the stress con-
centration in each grain and thereby hastening frac-
ture.

Twinning is observed in many hexagonal close
packed metals and can make an important contribu-
tion to the inelastic accommodation of abutting grains
as discussed by Chin.'® At higher temperatures and
lower overall stress levels characteristic of the
creep regime, twinning becomes increasingly difficult
compared to slip in many materials, and the role of
the pyramidal slip becomes more important. Even a
relatively ‘‘hard’’ pyramidal system has a consider-
able influence on the overall creep-rate as long as it
permits some creep. For example, in Fig. 6 9, in-
creases from roughly 275 to 3,975 as 7¢ increases
from 37g to =, according to the self-consistent theory.

The present results can be used to infer information
about the pyramidal systems of ice. A number of
direct measurements of steady creep on basal and
prismatic systems have been made for single crystal
ice. Weertman™ has compared some of this data
with uniaxial steady creep data for polycrystalline
specimens, all data being normalized to - 10°C.
Figure 7 is abstracted from Weertman’s Fig, 4 and
includes, in addition, two theoretical curves (shown
dashed) for the polycrystal from the present analysis.
(See Fig. 4 of Ref. 14 for more detail on the experi-
mental data.) The single crystal data has been con-
verted to equivalent uniaxial form in Fig. 7 using ¢
= V37 and € = y/¥3, following Weertman, and the
polycrystal data falls within the shaded band. The
theoretical curves for the polycrystal were derived
from the data for the prismatic systems using the
self-consistent results of Fig. 6 and picking two val-
ues of TB/TC to bracket the polycrystalline data. For
the prismatic systems » = 3. This value was used in
the theoretical calculations; #» is slightly less for the
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Fig. 7T—Collected experimental data for ice at —10°C from
Weertman, and comparison with theoretical curves (1 and 2)
for poiycrystal derived from data for prismatic systems.

basal systems but, since TA/TB is so small (=0.1), the
resistance to creep on the basal systems could be ne-
glected altogether with little change in the results.
Curve 1 in Fig. 7 corresponds to the choice TB/TC

= 1/4 so that (from Fig. 6) G, = 2.47p, which then per-
mits one to determine Curve 1 from the prismatic
data. Curve 2 corresponds to 7g/7¢ = 0 with G,

= 3.97g. In conclusion, the self-consistent model in-
dicates that the experimental data for ice is compati-
ble with very ““hard’’ pyramidal systems. Direct
measurement of pyramidal glide in ice has not yet
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been reported; nor has any other mechanism been
reported which will supply c-axis straining, except
possibly void growth at low pressures. However,
there is some evidence, based on observations of etch
channels, that glide on the pyramidal systems
{1122K1123) may occur.”®

The present study has been limited to isotropic dis-
tributions of single crystals. Texture development
associated with large straining has not been addressed
but is clearly an important aspect of hexagonal mate-
rial behavior because of large anisotropy at the single
crystal level. The present study does, however, serve
to emphasize that, in the study of texture effects based
on the widely used Bishop-Hill bound, one must not
lose sight of the fact that the upper hound may in fact
substantially overestimate the yield strength of the
material.
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