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Introduction

HIS note presents the results of a brief investigation of the

effect of initial imperfections on the buckling of exlindrical
shells under combinations of axial compression and external
pressure.  Although consideration is restricted to shells with
axi=vmmetric imperfections, the important features of previ-
ously reported experimental findings are reproduced.

Analysis of Cylindrical Shell with Axisymumetrie
Imperfections

In this note we consider a cylindrical shell with an injual
imperiection in the form of the axisymmetric buckling mode
of the perfect shell under axial compression., That is
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wy = Eh cos gl R) (D

where wy is the initial radial displacement, £ is the magnitude
of the imperfection relative to the shell thickness £, x is the
axial distance, B i the shell radiug, and

gt = 12(1 — v} (R/R)?

The length of the shell L is assumed {c be sufficiently long to
insure that the end conditions (assumed sufficientlv strong) do
not have an appreciable effect on the buckling load of the
cyvlinder when loaded under axial compression alone.  Theo-
retical analyses! seem to indicate that this requirement is mef
for thin shells of length greater than or about equal to the
radins.

Koiter? has obtained an upper bound to the buckling load
of the unpressurized shell described previously for the case of
pure axial loading.  Imperfections of the order of magnitude
of the shell thickness (i.e.. £ crder unity) reduee the buckling
lead to a small fraction of the axial buckling load of the un-
pressurized perfect shell

Fy = 2r(3(1 — oY V2ER?

IKoiter's analysis has been extended to obtain an upper bound
to the axial buckling load of pressurized cylinders.® The
upper bound expression in Ref. 3 is also valid for buckling
under combined axial compression and external pressure.
Here, these results will be exploited without repeating the
details of the analysis other than to give a very brief deserip-
tion of the method employed.
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The large-deflection Donnell equations for an imperfect
eylindrical shell vield a very simple prebuckling solution for
the loading combinations considered here and for an initial
imperfection of the form given by Eq. (1). Bifurcation from
the prebuckling solution oceurs at a certain value of the axial
load (for a given external pressure) in the form of a non-
axisymmetric buckling mode. The load-deflection curve falls
subsequent to bifurcation, and, thus, the hifurcation value is
the buekling load.

The eigenvalue equations for the bifureation load are solved
approximately in a manner which insures that the approxi-
mate eigenvalue expreseion vields an upper bound to the exact
bifurcation load (again, for fixed values of external pressure
and initial imperfection). To effect this approximate solu-
tion, it is necessary to assume a form for the nonaxisvmmetric
huckling deflection. The form assumed was

w = singg{a/R) sin(v/2)q(y/R) (2)

where i is the civcumferential distance, and + js a free param-
eter Lo be chosen to minimize the upper bound value.
The eigenvalue equation, obtained in Ref, 3. 18
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where ¢2 = 3{1 — »¥), and the pressure parameter is

B = cpRY Eh?
Here P ix the total axial load (the load resulting from external
pressure on the capped ends plus the additional applied
axial load) .+

To find the upper bound estimate of the axial buckling load
B/ Py for a given value of p and initial imperfection £, it ix
necessary to solve BEq. (3) for P/P; in terms of v and then
find the value of « such that P/ P, is minimized. An equiva-
lent, but considerably easier, procedure is to solve Tq. (3) for
p in terms of P/P,, £ and 4 and then to minimize p with
respect to . This procedure leads to the upper bound
curves plotted as solid lines in Fig. 1. These curves corre-
spond to three values of £ chosen such that shell buckles at
P/Py = 0.3, 0.5, and 0.7 when subject to axial compression
with no external pressure. The upper bound character can
be construed in either of the following two ways: 1) for
a given value of exfernal pressure # the associated value of
axial load iz an upper bound to the actual axial buckling
load or 2) for a given value ol total axial load P/P, the
associated value of p i an upper bound to the actual buckling
pressure,

Included in Fig. 1 are buckling load curves {dashed) for
combined axial compression and exiernal pressure for an
initially perfect shell. These curves are straighf-line approxi-
mations to those cbiained, for example, in Ref. 1 on the basis
of linear buckling equations for & perfeet cylinder. The
several curves shown correspond to different values of the
frequentiv defined length parameter

2= (1 — Y R/h)(L/R)?

where L is the length of the shell,  Although the upper bound
resulfs are independent of shell length and end conditions, the
dashed buckling curves for the perfect cyvlinders are dependent
on both. The curves in Fig. 2 correspond {o a shell, which is
simply supported with respect to the racial displacement, free
with respect to additional axial stresses, and clamped with
respect to the circumnferential displacement. Completely
clamped end conditions can raise the buekling load under pure

F With # = ), Koiter used this expression to obtain the resulis
for the unpressurized cylinder.
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Fig. 1 Eflect of external pressure on buckling load of
initially tmperfect eylindrical shell.

external pressure as much as 409! For other end conditions,
completely clamped for example, the curves for the perfect
evlinder would also be essentially straight line curves. How-
ever, they would intersect the p axis at different values than
shown. The effeet of end conditions on the axial buckling
load can be considered negligible for the purposes of this note
as long as they are sufhiciently strong.

Reduction of the Joad carrying capacity resulting from the
prezence of the imperfection of the assumed axisymmetric
form occurs only if the shell buckles in a mode, which is, more
or less, of the form given by Lq. (2), Under pure external
nressure, for example, the shell buckles in a mode with only
one-hali wavelength over the entire length of the cylinder.
The assumed imperfection has essentially no effect on the
buckling load and, consequently, the predictions of the linear
theory are valid. We expect the upper bound predictions to
be appropriate for combinations of axial load and external
pressure such that the upper bound predictions fall below
those for the linear buckling theory. On the other hand, the
linear theory will be valid, both with respect to buckling load
and mode form, for combinations such that results of the
linear theory fall below the upper hound predictions.  Thus,
the curve of critical load combinations (somefimes referred to
as the interaction curve) congzisis of the following two
branches: 1) the upper bound branch on which the shell
buckles in a mode of the form of Eq. (2} and 2) the linear
buckling theory branch.

For a given value of external pressure the axial buckling
load will be either the upper hound value (actually less than
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Fig. 2 Experiment data, Weingarten and Seide.
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or equal to this value) or the value predicted for the perfect
shell, whichever is less.

Discussion of Results and Comparison with Experiment

Recently published experimental data by Weingarten and
Seide* are reproduced from their paper in Fig. 2. A typieal
specimen of the nine plotted was buckled repeatedly for loads
ranging from axial compression with no external pressure to
pure external pressure. In effect, the buekling load data for
each specimen represents a complete interaction curve for a
eylindrieal shell with a given initial imperfection. It is there-
fore meaningful to make a direct comparizson with the inter-
action curves of Fig. 1. Of course, it should be remem-
bered that the theoretical interaction curves are strictly
applicable only to shells with the assumed axisymmetrie
imperfection.,

A typical experimental point in Fig. 2 represents a critical
combination of total axial load P and external pressurc p.
The total axial load has been normalized with respect to
2xFh? and, thus, the value of the ordinate for p = 0 reflects
the extent to which the axial buckling load falls below that for
a perfect shell P/ (2xFER% = 0.6. In addition. the sbscissa
value is p/po where pp is the experimentally determined pres-
sure for buekling under external pressure alone. The doited
line labeled interaction curve is the curve of eritical load com-
binations as predicted by the hinear buckling theory for a
perfect cylinder.

The two main features of the theoretical results are 1) the
two branches of the interaction curve and 2) the lack of strong
dependence of the axial buckling load on pressure on the
upper bound branch. DBoth these features are characteristic.
to a certain extent, of almost all of the specimens. About
half of the experimental interaction curves can be reproduced
quite accurately by the theoretical curves, if appropriate
choices are made for the imperfection magnitude £, and if the
pressure coordinate is normalized with respect to po.  Appar-
ently, however. some specimens exhibit a greater dependence

on pressure than s predicted for a shell with axisymmetric

imperfections.

At least two possible explanations can be suggested to
account for the dizerepancy between the theory, as presented
here, and experiment. Firsily, the predictions on upper
bound branch are, as has been emphasized, of an upper hound
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nature and, most likelv, ave overestimates, Probably more im-
portant is the failure to account for other than axisymmeiric
imperfections. In this connection, it is noted that a signifi-
cant distinetion was found between the roles of axisymmetric
and asymmetric imperfections in reducing the axial buckling
load of pressurized cylinders.? Although asymmetric im-
perfections are ironed out by internal pressure, axisymmetric
ones are not.  An ironing in effect caused by external pressure
{that is, the effect of the external pressure in pushing in the
initial asymmetric imperfection) is expected to give & greater
pressure dependence than is predicted for a shell with only
axisymmetric imperfections.

A multiphicity of buckling modes is associated with the
critical load of a perfect eylindrical shell under axial com-
pression. Imperfections in the form of any of the buckling
modes are particularly degrading. On the basis of linear shell
theory, it is a simple matter to show that the smaller the
number of circumferential wavelengths associated with one of
these imperfections the less internal or external pressure will
be necessary to iron it out or in. Thus, a cylinder whose
puckling behavior is determined by an asymmetric imperfec-
tion with relatively few circumferential wavelengths should be
expected to show a definite pressure dependence over the
entire interaction curve. This effect, however, will be less
noticeable in the case of externally pressurized cylinders
than for those internally pressurized. This follows because
the external pressure on & thin shell with z greater than 50,
zay, can never exceed p = 0.2, although the ironing out
effect only becomes significant at internal pressures of this
order or larger.
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