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Dent Imperfections in Shell
Buckling: The Role of Geometry,
Residual Stress, and Plasticity
Departures of the geometry of the middle surface of a thin shell from the perfect shape have
long been regarded as the most deleterious imperfections responsible for reducing a shell’s
buckling capacity. Here, systematic simulations are conducted for both spherical and cylin-
drical metal shells whereby, in the first step, dimple-shaped dents are created by indenting a
perfect shell into the plastic range. Then, in the second step, buckling of the dented shell is
analyzed, under external pressure for the spherical shells and in axial compression for the
cylindrical shells. Three distinct buckling analyses are carried out: (1) elastic buckling
accounting only for the geometry of the dent, (2) elastic buckling accounting for both
dent geometry and residual stresses, and (3) a full elastic–plastic buckling analysis account-
ing for both the dent geometry and residual stresses. The analyses reveal the relative impor-
tance of the geometry and the residual stress associated with the dent, and they also provide
a clear indicator of whether plasticity is important in establishing the buckling load of the
dented shells. [DOI: 10.1115/1.4048807]

Keywords: buckling, cylindrical shells, spherical shells, imperfections, residual stress,
plasticity

1 Introduction
Major efforts are underway to revise design codes for shell buck-

ling [1,2] which will place more emphasis on the analysis and
quality assessment of the shell with the intent of allowing designs
that are less conservative than those permitted by current design cri-
teria based heavily on shell buckling experiments. It has been a
long-held view that the most deleterious imperfections for unstif-
fened shell structures are geometric departures of the middle
surface from the perfect shape, assuming support conditions are
adequate. This view almost certainly arose after the pioneering
work of von Kármán and Tsien [3], Koiter [4], and others
showed that relatively small geometric imperfections could
explain the significant reductions below the predictions for perfect
shells of experimentally measured buckling loads. However, it is
not known to what extent factors other than imperfection geometry
contribute to the buckling loads seen in the large experimental data
sets for cylindrical and spherical metal shells [5,6] used to establish
design knockdown factors. In this paper, we carry out a systematic
study to parse the roles of geometric imperfection, residual stress,
and plasticity in contributing to the buckling load reductions of
metal spherical and cylindrical shells. Our focus is primarily on
shells designed to buckle elastically, although the role of material
yield stress will be exposed. Specifically, we carry out a two-step
analytical process whereby the shell is first indented into the
plastic range to create a localized dent with the accompanying resi-
dual stresses. Then, in the second step, the shell is analyzed to ascer-
tain the buckling reduction caused by the dent imperfection. In the
second step, we carry out both elastic and elastic–plastic buckling
analyses and, to see the effect of the residual stress, we carry out
the analyses both with and without the residual stress.
While we are unaware of studies similar to the one to be pre-

sented in this paper which focus on residual stresses accompanying
localized dimple-like imperfections, there is a substantial literature

on the influence of residual stress on buckling of welded shell struc-
tures, e.g., Refs. [7–9], dealing with both thick and thin walled
shells. There is also a small literature on the residual stresses in
cylindrical shells formed by plastically bending flat plates into cyl-
inders by various means, e.g., Refs. [10,11]. Most of these studies
have been concerned with relatively thick-walled shells which
buckle in the plastic range.
Recent analytical and computational research on the

imperfection-sensitivity of elastic shell buckling has placed empha-
sis on localized dimple-like imperfections which are generally
regarded to be more realistic than imperfections in the shape of
the buckling modes which generally extend in a highly correlated
manner over the entire shell [12–14]. The present study follows
in this path by focusing on dimple, or dent, imperfections created
by indenting the shell into the plastic range. Sections 2 and 3 deal
with spherical shells, and Secs. 4 and 5 deal with cylindrical
shells. The first two sections on each type of shell presents results
on the creation of the dent, while the second of the two sections
gives results from several buckling analyses used to parse the
roles of the geometric imperfection, residual stress, and plasticity.
The nonlinearity and buckling behavior of the spherical shell is
such that the analysis can be meaningfully confined to axisymmetric
behavior within a framework of ordinary differential equations,
allowing for consideration of all the important parameters. For the
cylindrical shell, the essential nonlinear buckling behavior is inher-
ently two-dimensional, and a commercial code has been employed
to perform both steps of the analyses.

2 Spherical Shells: Step 1, Creating the Dent
Imperfection
The first step in the set of simulations is the indentation of the

perfect spherical shell to create the imperfection. Equal and opposite
inward-point forces are applied at the shell’s poles with magnitude
large enough to cause plasticity. Then, upon reducing the forces to
zero, an axisymmetric dimple-shaped dent remains at each pole
accompanied by an axisymmetric residual stress distribution. The
shell has radius R and thickness t. The shell is elastically isotropic
with Young’s modulus E and Poisson’s ratio ν. Reference
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throughout this section and the next will be to the elastic buckling
pressure of the perfect shell, pC, and the associated compressive
equi-biaxial membrane stress at buckling

pC =
2Et2����������

3(1 − ν2)
√

R2
, σC =

Et����������
3(1 − ν2)

√
R

(1)

The plastic behavior of the shell is also taken to be isotropic and
characterized by J2 flow theory. The tensile (and compressive) yield
stress is σY, the hardening exponent is N, and the tensile stress–strain
curve (with continuous slope at yield) is
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σ
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with σ as stress and ɛ as strain.
The strain–displacement relations of shell theory used for the axi-

symmetric deformations of the spherical shell are those of the small
strain-moderate rotation theory of Sanders [15] and Koiter [16]. All
the calculations in this paper assume the behavior of the spherical
shell is symmetric about the equator with θ as the meridional
angle measured from the equator. The problems considered are
described by a sixth-order nonlinear system of first-order ordinary
differential equations (ODEs) employing the vector of unknowns
(Q, Mθ, Nθ, φ, w, u) where, in standard shell theory notation, Q is
the transverse shear force/length, Mθ is the meridional resultant
moment, Nθ is the resultant meridional in-plane stress, φ is the rota-
tion, w is the outward normal displacement, and u is the tangential
displacement. The formulation of the incremental equations and the
solution method is outlined in Ref. [17]. A finite difference method
is employed for numerical solution and most of the simulations used
200 equally spaced nodal points between equator and pole. Each
incremental load step requires incremental moduli averaged
through the thickness relevant to the shell theory formulation to
be computed using the plasticity formulation. For this purpose,
stresses in the shell are saved at 8 points through the thickness at
all the midpoints between the equally spaced nodes.
An inward force of magnitude P directed toward the center of the

sphere is applied at the pole to indent the shell, first increased to a
maximum value and then unloaded back to zero. Symmetry bound-
ary conditions consistent with no external constraint are applied at
the equator. This process is illustrated in Fig. 1(a) for three values
of the maximum force labeled as A, B, and C. This example is com-
puted for a shell with R/t= 200, ν= 0.3, σY/σC= 1, andN= 0.25. The
nonlinearity of the monotonically increasing curve of force versus
inward pole deflection is due to both the nonlinear elastic behavior

of the shell and plasticity, with plasticity first occurring in this
example for PR/2πD≅ 1.5 and −wpole/t≅ 0.5. The elastic bending
stiffness isD=Et3/12(1− ν2). The residual dent shape after unload-
ing for each of the three maximum indentation forces is plotted in
Fig. 1(b) with w(θ) as the outward normal displacement of the
shell middle surface. For a shell with R/t= 200, the center of the
dent to its edge extends roughly 10 deg. The width of the residual
dent increaseswith increasing denting force and resulting dent ampli-
tude. Figure 1(c) plots the distribution for case C of the three residual
shell stress quantities. These are the stress quantities (in addition to
the dent shape) that enter the elastic buckling calculations in Step 2
in Sec. 3 which account for the residual stresses in the shell.
To deal with the singularity at the pole due to the concentrated

indentation force, we have taken a very small section of the shell
at the pole within the region β≤ β0 to be rigid, with angle β=
π/2 − θ measured from the pole and

β0 = 0.048
�������
1 − ν2

√
R/t

( )−1/2
(3)

For a shell with R/t= 200, β0 = 0.2 deg; the small influence of
this modification is discussed and illustrated in Ref. [18]. When
the yield stress is scaled such that σY/σC remains fixed, the dimen-
sionless curves of PR/2πD versus −wpole/t in Fig. 1(a) are indepen-
dent of R/t for thin shells (e.g., R/t larger than about 25). For
reference, σY/σC= 1 implies that σY/E= 0.00303 if R/t= 200. The
shapes of the dent in Fig. 1(b) are also independent of R/t if they

are plotted using the polar angle scaled as β
�������
1 − ν2

√
R/t

( )1/2
.

With δ denoting the inward deflection of the shell middle surface
of the residual dent at the pole, i.e., δ=−(wpole)res, the normalized
dent amplitude for three values of σY/σC is plotted as a function of
the maximum imposed pole deflection during indentation in
Fig. 2(a) and as a function of the maximum imposed indentation
force in Fig. 2(b). The amplitude range of δ/t plotted in Fig. 2 is
the relevant range for the present study. Figure 2(c) is a plot of
the residual meridional in-plane resultant stress, �Nθ, averaged
over the circular region at the pole of radius 2.5

���
Rt

√
(approximately

10 deg for R/t= 200) and normalized by σYt. One sees from this plot
that the ratio of residual compressive stress associated with the dent
to the yield stress depends almost entirely on the dent amplitude δ/t
with little dependence on σY/σC in the range of interest in this paper.
This finding will be seen to have implications for buckling. We have
re-computed these curves using a strain hardening index N= 0.1
rather than N= 0.25. The two sets of curves are similar with no dif-
ference of any significance for our purposes. As for the case in
Figs. 1(a) and 1(b), the dimensionless plots in Fig. 2 are found by

Fig. 1 Illustration of the creation of a dent imperfection in Step 1. (a) Dimensionless inward directed pole force versus
inward pole displacement normalized by shell thickness, including unloading back to zero pole force, for maximum
forces of PR/2πD=2, 3, and 4. (b) Residual dent shape for the three maximum forces. (c) Distribution of the normalized
residual values of Q, Mθ, and Nθ for the maximum force corresponding to C. These were computed for R/t=200, ν=0.3,
σY/σC=1, and N=0.25.
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performing calculations with different R/t to be essentially indepen-
dent of R/t if R/t > 25.

3 Spherical Shells: Step 2, Buckling of the Dented Shell
Under External Pressure—Three Analyses
To set the stage for this section, we begin by presenting results for

the buckling of a spherical shell with a “standard” geometric dimple
imperfection [14] that is subject to external pressure. Both elastic and
elastic–plastic buckling calculations are performed which reveal
important insights into the role of the dimensionless yield stress
parameter, σY/σC, in the buckling of imperfection-sensitive shells.
Identical axisymmetric geometric dimple imperfections (with no
residual stresses) are introduced at each pole having an initial
normal deflection of the middle surface given by (at the north pole)

wI(β) = −δe−(β/βI )
2

with βI = B
�������
1 − ν2

√
R/t

( )−1/2
(4)

The buckling pressure for a given imperfection amplitude δ is the
maximum pressure the shell can support. The buckling pressures in
Fig. 3 have been computed for 30 values of δ/t over the range shown.
The elastic buckling pressure, computedwith an elastic version of the
code, lies just above the elastic–plastic computation for σY/σC= 1,
and an elastic–plastic calculation with σY/σC= 1.25 (not plotted in
Fig. 3) is identical to the elastic result, implying that up to the
maximum pressure, no plastic yielding occurs for any of the imper-
fect shells. For lower yield stresses, e.g., σY/σC= 0.75 and 0.5, plastic
deformation does occur before the shell reaches the maximum
support pressure and this results in a lower buckling pressure,
more so for smaller imperfection amplitudes than for larger
amplitudes.
The dimensionless plots in Fig. 3 reveal an important feature of

spherical shell buckling [19] which has also been observed for
cylindrical shells under axial compression [20]. With geometric
imperfections, the maximum pressure (or maximum axial load for
the cylinder) is attained while the shell is still in the elastic range
if σY/σC≥ 1, or at worse the shell only experiences minimal

Fig. 2 Residual dent amplitude normalized by shell thickness, δ/t, (a) versus maximum inward indentation pole deflection
and (b) versus maximum indentation force for three values of σY/σC for a shell with R/t=200, ν=0.3, and N=0.25. (c) The
resultant stress component, Nθ, normalized by σYt and averaged over the circular region at the pole of radius 2.5

���
Rt

√
for

the same three ratios of σY/σC. The curves are essentially independent of R/t with these dimensionless variables.

Fig. 3 Buckling pressure as dependent on the amplitude of a geometric dimple imperfection (4) with no residual
stresses for a strain hardening exponent (a) N=0.25 and (b) N= 0.1. The top curve is based on an elastic
calculation, while the other three curves are based on an elastic–plastic calculation. With σY/σC=1.25, the
elastic–plastic calculation is identical to the elastic prediction implying no plasticity occurs prior to the
maximum pressure. These curves have been computed with R/t=200, ν=0.3, and B=1.5, but they are indepen-
dent of R/t.
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plastic yielding. The primary focus in this paper will be on shells
that have been designed to buckle elastically, and thus, we will be
mainly interested in shells whose yield stress is no less than
the buckling stress of the perfect shell, i.e., σY/σC≥ 1. However, to
provide additional insight, we will show some results for σY/σC=
0.75. The study of cylindrical shells under axial compression in
Secs. 4 and 5 feature the geometry and material properties represen-
tative of a typical aluminum soda can with σY/σC= 1.95. One should
be aware that the dramatic reduction of the load at buckling as a
function of the imperfection amplitude characterizing spheres under
external pressure and cylinders under axial compression helps
explain why plasticity does not occur before the onset of buckling
in the imperfect shells if σY/σC≥ 1. The same may not necessarily
be true for modestly imperfection-sensitive shell structures such
as the cylindrical shell under external pressure or for columns and
flat plates under compression, as discussed again in Sec. 6.
Now, we consider buckling under external pressure of the spheri-

cal shells dented in Step 1. As mentioned in Sec. 1, three types of
buckling analyses will be used in Step 2 to parse the relative impor-
tance of imperfection geometry, residual stress, and the influence of
any additional plasticity prior to buckling. For each dented shell, two
elastic buckling calculations will be made, one accounting only for
the geometry of the dent and the other including both the geometry
and residual stresses. The third calculation for each dented shell is
an elastic–plastic analysis, accounting for dent geometry and residual
stresses, whose purpose will be to determine if plasticity occurs prior
to buckling during application of the pressure and, if so, what effect it
has on the buckling pressure. In the elastic–plastic buckling analysis,
the full details of the plasticity distribution through the shell at the
nodalmidpoints are used; for each dent amplitude, the buckling anal-
ysis in Step 2 follows Step 1 seamlessly as a second form of loading.
To recapitulate, a perfect spherical shell with prescribed parame-

ters (R/t, ν, σY/σC, and N) is first dented (Step 1), and then, this same
shell, which is otherwise unloaded, is subject to external pressure
(Step 2). The maximum pressure the shell can support is identified
as the buckling pressure and computed by each of the three methods
mentioned earlier. The plots in Fig. 4 summarize results for three
levels of yield stress. For each of the three yield stresses in
Fig. 4, 25 shells indented over a range of dent amplitudes up to
δ/t= 1.5 were subsequently analyzed for buckling by the three
methods. The shells in Fig. 4 have R/t= 200, but the curves in
this figure are essentially independent of R/t. The curves have
also been computed for a hardening exponent N= 0.1 and do not
differ significantly from those plotted.
Begin by considering the shells in Figs. 4(a) and 4(b) which we

have previously designated as having been “designed to buckle elas-
tically.” The first thing to note is that this designation is indeed

justified. The elastic analysis which includes residual stress and the
complete elastic–plastic analysis which includes the entire prior resi-
dual history are identical for σY/σC= 1.5 and virtually identical for
σY/σC= 1, except for very small dent amplitudes where plasticity
does slightly reduce the buckling pressure. Moreover, by comparing
the two analyses which account for residual stresses with the elastic
analysis that accounts only for dent geometry (the upper curve in
each plot), one immediately sees that geometry accounts for a large
fraction of the buckling pressure reduction for these imperfections.
This confirms the long, widely held notion that imperfection
geometry is the dominant contributor to imperfection-sensitivity.
However, this conclusion must be tempered by the fact that account-
ing for the residual stress does lower the buckling pressure in these
examples by an amount that should not be ignored, particularly so
for the larger dent amplitudes. Furthermore, note that the effect of
the residual stress is larger for the shells in Fig. 4(a) with the
higher yield stress. This is easy to understand: For a given dent ampli-
tude, the higher the yield stress of the material, the higher the stress
need to create the dent and thus the higher the residual stress. This
trend is consistent with the results in Fig. 2(c) that indicate that the
residual in-plane stress for a given dent amplitude is proportional
to the yield stress with little influence from σY/σC.
The main insight to emerge from the results in Fig. 4(c) for the

shell that is not designed to buckle in the elastic range (having
σY/σC= 0.75) is that plasticity occurring during the pressure
loading does indeed lower the buckling pressure below what both
elastic analyses predict. This effect of plasticity is largest for the
smaller dent amplitudes, not surprisingly because the perfect
undented shell will buckle almost immediately after the membrane
stress reaches yield, that is, when p≅ 0.75pC. It should be men-
tioned that no attempt has been made in this paper to analyze the
plastic bifurcation problem for the perfect shell when σY/σC< 1. It
is well known that the J2 flow theory of plasticity employed in
this study tends to be overly stiff leading to bifurcation predictions
for perfect shells (and plates) that often exceed those obtained using
theories with yield surfaces having higher curvature or corners, and
often higher than experimental findings. Nevertheless, once the
imperfection amplitude becomes non-negligible, the dependence
of buckling predictions on yield surface curvature tends to disap-
pear, as illustrated for spherical shells in Ref. [17]. We do not
believe the choice of plasticity theory has an appreciable influence
on the results in Figs. 2 through 4 nor those for cylindrical shells to
follow.
Finally, it is also worth remarking that a dent imperfection with

an amplitude δ/t is not quite as deleterious to buckling as the “stan-
dard” dimple imperfection as can be seen by comparing the results
in Fig. 4 with those in Fig. 3.

Fig. 4 Buckling of the dented spherical shell subject to external pressure for (a) σY/σC=1.5, (b) σY/σC=1, and (c) σY/σC=
0.75. Results of three types of buckling analyses are plotted: an elastic analysis accounting only for the geometry of the
dent, an elastic analysis accounting for both the dent geometry of the dent and residual stresses, and an elastic–plastic
analysis accounting for the dent geometry and residual stresses. The calculations have been made with R/t=200, ν=
0.3, and N=0.25, but the curves are independent of R/t.
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4 Cylindrical Shells: Step 1, Creating the Dent
Imperfection
The indentation process creating a dent for the cylindrical shell is

essentially the same as that for the spherical shell. For the cylindri-
cal shell, however, the process is not axisymmetric and the commer-
cial finite element code, ABAQUS STANDARD [21], has been used to
carry out the calculations. A specific shell is used to illustrate the
indentation process and the subsequent buckling calculations in
Step 2: it is a clamped cylindrical shell with dimensions and mate-
rial properties of a typical aluminum soda can that has been tested
extensively and analyzed [22]. The shell’s length, radius, and thick-
ness are L= 104.1 mm, R= 28.6 mm, and t= 0.1 mm such that
L/R = 3.64 and R/t= 286. The plasticity theory employed is again
J2 flow theory with the stress–strain curve (2) using E= 69 GPa,
ν= 0.3, σY= 285 MPa, and N= 0.1. The cylindrical shell with
these dimensions and material properties will be referred to as the
“reference shell.” The classical buckling load (axial force) and asso-
ciated compressive axial stress for a perfect elastic cylindrical shell
are

FC =
2πEt2����������
3(1 − ν2)

√ , σC =
Et����������

3(1 − ν2)
√

R
(5)

The classical buckling stress for the shell dimensions listed above
is σC= 146 MPa, and thus, the reference shell has σC/σY= 1.95. In
the terminology of this paper, the reference shell used to illustrate
the effect of dent imperfections has been designed to buckle elasti-
cally. The effect of decreasing the yield stress for this shell will also
be investigated.
The computational details follow those presented in Ref. [13]

where the effect of geometric dimple imperfections has been
studied. Step 1 indents a perfect shell, and Step 2 buckles the
dented shell under axial compression. The mesh for the models
was created by user-written codes; S4R elements with an element
length of 0.914 mm in both axial and circumferential directions,
which is roughly 0.5

���
Rt

√
. For the integrations, 11 section points

through the thickness of the shell were selected. At the two ends
of the cylindrical shell, two nodes (one at each end) were defined
at the center of the circular cross section. These central nodes
were used to apply the boundary conditions at each end of the
shell. The central node at each end of the shell is connected with
rigid links to the other nodes at the end of the shell. The rigid
links constrain both the translational and rotational
degrees-of-freedom with respect to the central node. Using this

procedure, the simulations enforce clamped boundary conditions
at both ends and prescribed end-shortening Δ.
Overall rotation of the ends is suppressed. The geometrically

nonlinear Riks arc length analysis was used to follow the nonlinear
solutions. The indentation of the shell is performed using a rigid
spherical indenter (results for 3 indenter radii will be presented,
RI= 1, 1.5, and 2.5 mm). At the start of the indentation process,
the nearest point on the indenter is located 1 mm away from the
shell mid-surface. A displacement of the sphere is imposed which
translates it toward the shell. Contact between the rigid sphere
and the shell is assumed to be a hard contact, and the option for
separation during unloading is enabled. The tangential behavior
of the contact interaction between the sphere and shell is assumed
to be frictionless.
The loading and unloading process used to create the dent in the

reference cylindrical shell is illustrated in Fig. 5 for an indenter with
RI= 1 mm. The center of the dent is located at a point along the mid-
length circumference. In the example shown, the indenter is dis-
placed a maximum of 40 times the shell thickness to C (30 times
the shell thickness after first contact) and then retracted back to
its original position, A′. Plastic deformation occurs during

Fig. 5 Creating the dimple dent in the cylindrical shell. (a) The loading and unload-
ing indentation process. The associated history of (b) shell displacement, windent,
under the indenter versus imposed displacement of the indenter, Δ. The residual
dent amplitude is δ.

Fig. 6 Amplitude of the residual dent normalized by the shell
thickness as a function of the maximum imposed indenter dis-
placement normalized by the thickness. These results have
been computed for the reference shell cited in the text with
three different radii of the indenter.

Journal of Applied Mechanics MARCH 2021, Vol. 88 / 031007-5



Fig. 7 The shape of the residual dent in the reference cylindrical shell as created by the indenter with RI =
1 mm and max(Δ)/t=40: (a) along the circumferential arc passing through the center of the dent and (b)
along the axial line passing through the center of the dent. The coordinates (θ, z) are the circumferential
angle and axial distance both measured from the center of the dent which lies on the mid-circumference
of the shell; w(θ, z) is the residual normal displacement caused by the indentation.

Fig. 8 In-plane stresses averaged through the thickness and normalized by the yield stress plotted
along the circumferential arc passing through the center of the dent of the reference shell, (a) for a
dent amplitude δ/t=0.65 and (b) for δ/t=2.67

Fig. 9 In-plane stresses averaged through the thickness and normalized by the yield stress
plotted along the axial line passing through the center of the dent of the reference shell, (a) for
a dent amplitude δ/t=0.65 and (b) for δ/t=2.67

031007-6 / Vol. 88, MARCH 2021 Transactions of the ASME



loading, as seen in Fig. 6, and upon unloading, contact between
indenter and shell is lost at point D. The resultant dent amplitude
is approximately δ/t= 3.4 in this example.
The results for the residual dent amplitude (the maximum inward

residual normal displacement) in Fig. 6 reveal that there is essen-
tially no sensitivity to the indenter radius over the range of radii
and depth of indentation considered in the present study. In addi-
tion, the results show that for maximum indenter displacements
below about Δ/t≅ 20 (or about 10 times the thickness after first
contact), essentially no plasticity occurs during indentation, and
there is no residual dent. The contrast with the spherical shell is
striking. In Fig. 2, it is seen that plasticity sets in at indent displace-
ments of about ½ a thickness and substantial residual dents in the
sphere, i.e., δ/t> 1, are produced by indentation amplitudes of
only 3–5 times the shell thickness. Comparable dents in the cylin-
drical shell require indentation amplitudes of more than 20 times
the shell thickness after first contact. The non-zero Gaussian curva-
ture of the sphere creates a much stronger coupling between
bending and stretching than is the case for the cylinder which has
zero Gaussian curvature. Further ramifications of this difference
are evident in the shape of the residual dent in Fig. 7 discussed next.
The two plots in Fig. 7 show the residual normal displacement

following the indentation of the shell for the example in Fig. 5.
Figure 7(a) shows the residual displacement around the circumfer-
ence emanating from the center of the dent (at the middle of the
shell) with the center taken to be at θ= 0. Figure 7(b) displays the
residual displacement along the axial direction (the z-direction)
with the center taken to be at z= 0. In the circumferential direction,
the shape and extent of the dent is similar to that of the spherical
shell in Fig. 1. For a cylindrical shell with R/t= 286, the dent half-

width of about θ = 10 deg corresponds to a circumferential distance
of 50 t. By contrast, the effective half-length of the dent in the axial
direction is not well defined, and it decays gradually toward the
ends of the shell at z=±520t. The significant spread of the residual
deflection in the axial direction also reflects the fact that the cylin-
drical shell has zero Gaussian curvature.
Residual stresses in the reference shell are plotted in Figs. 8 and 9

for two levels of dent amplitude, δ/t= 0.65 and 2.67. Figure 8 dis-
plays the circumferential and axial in-plane stresses, σθ(θ, 0) and
σz(θ, 0), along the mid-circumference of the shell, averaged
through the thickness and normalized by the initial yield stress.
Figure 9 displays the same stresses averaged and normalized simi-
larly but along the axial line passing through the center of the dent,
i.e., σθ(0, z) and σz(0, z). The residual average in-plane stresses are
dominantly compressive and have a value of about −0.3 σY at the
center of the dent for both dent amplitudes. The residual in-plane
stresses are also localized in the vicinity of the dent, comparable
to the behavior of the dented spherical shell. Unlike the cylindrical
shell’s residual normal deflection, the residual stresses do not
extend farther in the axial direction than in the circumferential
direction.
The variation of residual stresses with increasing residual dent

amplitude are plotted in Figs. 10 and 11. Figure 10 presents the cir-
cumferential and axial in-plane stresses σθ(θ, 0) and σz(θ, 0), along
the mid-circumference of the shell, averaged through the thickness
and normalized by the initial yield stress. Figure 11 presents the
same stresses averaged and normalized similarly but along the
axial line passing through the center of the dent, i.e., σθ(0, z) and
σz(0, z). For smaller dent amplitudes, the residual stresses tend to
be smaller as expected.

Fig. 10 In-plane stresses averaged through the thickness and normalized by the yield stress plotted along
the circumferential arc passing through the center of the dent of the reference shell, with increasing dent
amplitude

Fig. 11 In-plane stresses averaged through the thickness and normalized by the yield stress plotted along
the axial line passing through the center of the dent of the reference shell, with increasing dent amplitude
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5 Cylindrical Shells: Step 2, Buckling of the Dented
Shell Under Axial Compression—Four Analyses
Four distinct analyses of the dented reference cylindrical shell

have been performed: two elastic buckling analyses, one ignoring
the residual stress and the other accounting for the residual stresses;
and two elastic–plastic buckling analyses, one ignoring the residual
stress and the other accounting for the residual stresses. The geom-
etry of the dent is accounted for in all four analyses. As noted
earlier, the shells are fully clamped at the ends suppressing end rota-
tion, and the axial displacement Δ of one end toward the other is
imposed. The axial displacement is increased until a first
maximum in the axial compressive force, Fmax, is attained which
is defined as the buckling load. In some cases, this first maximum
is followed by a drop in axial force which is in turn followed by
a subsequent increase in axial force. For most of the range of param-
eters for the examples analyzed here, the buckling loads plotted cor-
respond to global buckling in the sense that the load is a maximum.
In some cases, however, the buckling load corresponds to a local
maximum such that the shell can support somewhat larger loads
beyond this point. In these cases, the deflections associated with
the local buckling are relatively large so that, even though local,
the buckling is likely to be regarded as undesirable from a structural
standpoint. We consider the first local maximum as the buckling
load because significant deflections occur at this stage in the
loading history [13]. The results of the four analyses are presented
in Fig. 12 as Fmax/FC versus the dent amplitude δ/t.
Recall that the reference shell (a typical soda can) has been

designed to buckle elastically with σY/σC= 1.95. Figure 12 reveals
that, indeed, plasticity plays no role in the buckling of the shell as
can be inferred from the fact that the predictions of the full
elastic–plastic buckling analysis and the elastic buckling analysis
are essentially identical whether residual stresses are included or
not. This is completely consistent with our findings for the spherical
shell. The role of the dent’s residual stress is also consistent with
what was found for the spherical shell. An analysis which accounts
for the residual stress of the dent predicts buckling loads that are
between 15 and 30% lower than those predicted accounting only
for the dent geometry for almost all dent amplitudes except the
smallest. To summarize, the main message of this paper conveyed
clearly by Fig. 12 is that even if the shell buckles elastically, the
effect of the residual stresses associated with the imperfections
should not be ignored in a buckling analysis aimed at assessing
imperfection-sensitivity.
The role of the shell yield stress is presented in Fig. 13. The

perfect shell prior to denting has the same geometry as the reference
shell. Only the yield stress is varied in this figure. For each value of

the yield stress in Fig. 13, the shell is dented to produce a given dent
amplitude (Step 1) and then followed as a continuing calculation (in
Step 2) by an elastic–plastic buckling analysis accounting for both
the geometry and residual stress of the dent. The trends in Fig. 13 as
dependent on σY/σC are similar to those discussed for the spherical
shell in Fig. 4. Specifically, except for the smallest imperfection
amplitudes, plasticity in Step 2 has only a minor effect on the buck-
ling load if σY/σC≥ 1. Only for lower values of the yield stress, i.e.,
σY/σC< 1, does plasticity have an appreciable effect on the predic-
tions of the buckling load. Like the results for the spherical shell
under external pressure, the results for the cylindrical shell under
axial compression confirm the assertion that a highly imperfection-
sensitive shell designed to buckle elastically when perfect, i.e.,
σY/σC≥ 1, will indeed buckle elastically—or nearly so—even if
imperfect. This assertion is also in accord with an early result
[20] for buckling of axially compressed cylindrical shells with sinu-
soidal geometric axisymmetric imperfections: If σY/σC≥ 1.05, no
plastic yield occurs before the buckling load is attained for any
imperfection amplitude, while if σY/σC= 1, plastic yielding occurs
only for very small imperfection amplitudes.

6 Concluding Remarks
Localized dent imperfections have been created in otherwise

perfect spherical and cylindrical shells by indenting them into the
plastic range. The primary focus is on shells that are designed to
buckle elastically such that σY/σC≥ 1 where σC is the compressive
buckling stress of the perfect shell. The geometry and the residual
stress associated with the dent imperfection are computed. The
dented shells are then analyzed for buckling, under external pres-
sure for the spherical shell and under axial compression for the
cylindrical shell. Both elastic and elastic–plastic buckling analyses
have been performed and, with the aim of assessing how important
the residual stress are, separate analyses were carried out: one ignor-
ing the residual stresses and the other taking them into account.

Fig. 13 Axial buckling load of dented cylindrical shells normal-
ized by the classical elastic buckling load as a function of the
dent amplitude δ/t for various ratios of yield stress to classical
buckling stress. Each of the buckling analyses in Step 2 is a
full elastic–plastic analysis accounting for both the geometry
of the dent and the residual stress. Dents are created for each
of the respective values of σY/σC and for each dent amplitude.
Prior to denting, all the shells are perfect having the same geom-
etry as the reference shell. The curve for the reference shell is the
upper curve labeled by σY/σC=1.95.

Fig. 12 Axial buckling load of the dented reference shell nor-
malized by the classical elastic buckling load as a function of
the dent amplitude δ/t. The results of four distinct buckling anal-
yses are presented: an elastic buckling analysis with and without
the residual stresses and a full elastic–plastic analysis with and
without the residual stresses.
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On the one hand, the findings confirm the long-held view that the
geometry of the imperfection (the deflection of the mid-surface
from the perfect shape) is the most important consideration in ana-
lyzing buckling imperfection-sensitivity of unstiffened shells. On
the other hand, the results of this paper reveal that, for dimple-like
imperfections created by denting, the residual stress can reduce the
buckling load by an additional 15–30% below what is predicted
based on an analysis only accounting for the imperfection geome-
try. For shells that are designed to buckle elastically, this is not
due to plasticity occurring in the buckling process, rather it is the
boost in local compression in the shell in the region of the dent
that enhances the susceptibility to buckling. The implication for
shell designers who wish to bypass the most conservative shell
buckling criteria by relying on the measurement of shell imperfec-
tions and incorporating them into their buckling analyses is that
residual stresses will also need to be taken into account, at least
for the types of dent imperfections considered here.
It is also worth repeating our finding that, for the two highly

imperfection-sensitive shell/loading combinations considered in
this paper, the buckling process (as opposed to the denting
process) is nominally elastic as long as the yield stress exceeds the
elastic buckling stress of the perfect shell, σY/σC≥ 1. Plasticity will
likely occur beyond the maximum load after buckling is initiated,
but little or no plastic yield occurs before the maximum load is
attained. As remarked earlier, it is not clear that this rule will hold
for shell structures that are less imperfection-sensitive than the
sphere under external pressure and the cylinder under axial compres-
sion. The dramatic drop of themaximum loadwith increasing imper-
fection amplitude for these two shell/loading combinations reduces
the stresses that produce plastic yielding. When the drop is less pre-
cipitous, stresses may reach yield before the maximum load is
attained in an imperfect shell. A systematic study of an example
such as the cylindrical shell under external pressure which is inher-
ently less imperfection-sensitive would be enlightening in this
regard but, to our knowledge, no such study exists in the literature.
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